Supporting information

Optimizing the Oxygen Reduction Reaction Activity of Pd Based

Nanocatalyst by Tuning Strain and Particle Size

Weiping Xiao,^a Marco Aurelio Liutheviciene Cordeiro,^b Mingxing Gong, ^a Lili Han, ^c Jie Wang,^a Ce Bian,^a Jing Zhu,^a Huolin Xin,^b and Deli Wang^{*a*,*}

Pd ₂ FeCo@Pt/C	Weight ratio	Atom ratio
Pt:Pd:Fe:Co-initial	2.7:100:23.0:25.5	1.5:100: 43.7:46.0
Pt:Pd:Fe:Co-ADT	3.1:100:21.7:23.5	1.7:100: 41.2:42.3

 Table S1 The ICP-AES results of Pd2FeCo@Pt/C catalyst.

Catalysts	MA at	MA (Pt/C) at	Els stars lasts	Refs
	0.9 V _{RHE}	0.9 V _{RHE}	Electrolyte	
Pd@Pt _{2-3L}	0.49 A mg _{Pt} ⁻¹	0.1 A mg _{Pt} ⁻¹	0.1 M HClO ₄	1
Pd(core)-Pt(shell)	0.2 A mg _{Pt} ⁻¹	0.12 A mg _{Pt} ⁻¹	0.1 M HClO ₄	2
$Pd@Pt_{1L}$	0.35 A mg _{Pt} ⁻¹	0.12 A mg _{Pt} ⁻¹	0.1 M HClO ₄	3
Pd@Pt	1.6 A mg _{Pt} ⁻¹	$0.32 \text{ A mg}_{Pt}^{-1}$	0.1 M HClO ₄	4
Pd@Pt _{1.8} Ni	$0.8 \mathrm{A} \mathrm{mg}_{\mathrm{Pt}}^{-1}$	0.16 A mg _{Pt} ⁻¹	0.1 M HClO ₄	5
Pt _{ML} /Pd ₉ Au ₁	0.31 A mg _{Pt} ⁻¹	0.1 A mg _{Pt} ⁻¹	0.1 M HClO ₄	6
Pd@Pt	1.56 A mg _{Pt} ⁻¹	0.081 A mg _{Pt} ⁻¹	0.1 M HClO ₄	7
Pd ₃ Au@Pt	0.94 A mg _{Pt} ⁻¹	0.203 A mg _{Pt} ⁻¹	0.1 M HClO ₄	8
AuCu@Pt	0.56 A mg _{Pt} ⁻¹	0.098 A mg _{Pt} ⁻¹	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	9
AuCu@Pt	$0.57 \text{ A mg}_{Pt}^{-1}$	0.11 A mg _{Pt} ⁻¹	0.1 M HClO ₄	10
Pd@Pt-Ni	2.5 A mg _{Pt} ⁻¹	$0.2 \text{ A mg}_{Pt}^{-1}$	0.1 M HClO ₄	11
Pd ₈ CoZn@Pt	2.18A mg _{Pt} ⁻¹	0.07 A mg _{Pt} ⁻¹	0.1 M HClO ₄	12
Pd@Pt	0.24 A mg _{Pt} ⁻¹	0.1 A mg _{Pt} ⁻¹	0.1 M KOH	13
AuCu@Pt	0.86A mg _{Pt} ⁻¹	0.088 A mg _{Pt} ⁻¹	0.1 M KOH	14
Pd ₂ FeCo@Pt	2.5 A mg _{Pt} ⁻¹	0.066 A mg _{Pt} ⁻¹	0.1 M HClO ₄	This work
Pd ₂ FeCo@Pt	5.4 A mg _{Pt} ⁻¹	0.048 A mg _{Pt} ⁻¹	0.1 M KOH	This work

Table S2 Comparison of MA at 0.9 V for Pd(Au)M@Pt and Pt/C extracted from literature.

Catalysts	Loading (mg cm ⁻²)	Peak power density	Electrolyte	Refs
CuPt-NC	2.0	250 mW cm ⁻²	6 M KOH	15
Pb ₂ Ru ₂ O _{6.5}	—	195 mW cm ⁻²	6 M KOH + 0.2 M ZnO	16
P,S-CNS	0.5	198 mW cm ⁻²	6 M KOH	17
S-DGF	—	300 mW cm ⁻²	6 M KOH + 0.2 M ZnCl ₂	18
C-CoPAN900	1.0	125 mW cm ⁻²	6 M KOH +0.2 M ZnCl ₂	19
CoO/N-CNT+NiFe LDH/CNT	1.0	265 mW cm ⁻²	6 M KOH + 0.2 M zinc acetate	20
Co@NG-acid	1.0	350 mW cm ⁻²	6 M KOH	21
CuFe alloy		212 mW cm ⁻²	6 M KOH	22
NiCo ₂ S ₄ /N-CNT	1.0	147 mW cm ⁻²	6 M KOH + 0.2 M ZnCl ₂	23
CoFe@NCNTs	1.0	150 mW cm ⁻²	6 M KOH + 0.2 M zinc acetate	24
Pd ₂ FeCo/C	1.0	256 mW cm ⁻²	6 M KOH + 0.2 M	This work
Pd ₂ FeCo@Pt/C	1.0	308 mW cm ⁻²	6 M KOH + 0.2 M zinc acetate	This work

 Table S3 Comparison of key performance parameters for Zn-air batteries extracted

 from literature.

Fig. S1 XPS curves of Fe on Pd₂FeCo/C nanoparticles.

Fig. S2 Overview STEM image of PdFe/C nanoparticles.

Fig. S3 Overview STEM image of PdCo/C nanoparticles.

Fig. S4 XPS curves of Pd₂FeCo/C nanoparticles.

Fig. S5 (a) The rotation-rate-dependent current-potential curves of Pd_2FeCo/C . (b)

The Koutecky-Levich plots on Pd₂FeCo/C at different potentials.

Fig. S6 (a) Mass activities and (b) specific activities at 0.85 V and 0.9 V, respectively.

Fig. S7 CV curves of Pd/C, PdFe/C, PdCo/C and Pd₂FeCo/C in N₂-saturated 0.1 M $HClO_4$ solution, sweep rate, 50 mV s⁻¹.

Fig. S8 ECSA of Pd/C, PdFe/C, PdCo/C and Pd₂FeCo/C catalysts.

Fig. S9 The relationship between specific activity and lattice constant (a), binding energy (b) of Pd.

Fig. S10 ORR polarization curves of Pd₂FeCo/C-300 and Pd₂FeCo/C-500.

Fig. S11 XRD patterns of Pd₂FeCo/C-300 and Pd₂FeCo/C-500.

Fig. S12 (a) The rotation-rate-dependent current-potential curves of Pd₂FeCo@Pt/C.

(b) The Koutecky-Levich plots on Pd₂FeCo@Pt/C at different potentials.

Fig. S13 CV curves of Pd₂FeCo@Pt/C and Pt/C nanoparticles before and after 10, 000 cycles durability test in 0.1 M N₂-saturated HClO₄, sweep rate, 50 mV s⁻¹.

Fig. S14 Specific capacities of the Zn-air batteries using $Pd_2FeCo@Pt/C$ and Pt/C as ORR catalyst at current densities of 5 and 20 mA cm⁻².

References

- 1. J. Park, L. Zhang, S. I. Choi, ACS Nano, 2015, 9, 2635-2647.
- L. Liu, G. Samjeske, S. Nagamatsu, J. Phys. Chem. C, 2012, 116, 23453-23464.
- 3. S. Xie, S. I. Choi, N. Lu, Nano Lett., 2014, 14, 3570-3576.
- 4. X. Wang, M. Vara, M. Luo, J. Am. Chem. Soc., 2015, 137, 15036-15042.
- 5. X. Zhao, S. Chen, Z. Fang, J. Am. Chem. Soc., 2015, 137, 2804-2807.
- 6. K. Sasaki, H. Naohara, Y. M. Choi, *Nat. Commun.*, 2012, **3**, 1115.
- 7. H. H. Li, S. Y. Ma, Q. Q. Fu, J. Am. Chem. Soc., 2015, 137, 7862-7868.
- 8. H. Li, R. Yao, D. Wang, J. Phys. Chem. C, 2015, 119, 4052-4061.
- 9. G. Wang, B. Huang, L. Xiao, J. Am. Chem. Soc., 2014, 136, 9643-9649.
- 10. J. Yang, X. Chen, X. Yang, *Energy Environ. Sci.*, 2012, 5, 8976-8981.
- 11. S. I. Choi, M. Shao, N. Lu, ACS Nano, 2014, 8, 10363-10371.
- 12. W. Xiao, J. Zhu, L. Han, S. Liu, J. Wang, *Nanoscale*, 2016, 8, 14793-14802.
- 13. K. Qi, W. Zheng, X. Cui, *Nanoscale*, 2016, **8**, 1698-1703.
- 14. G. Wang, J. Guan, L. Xiao, Nano Energy, 2016, 29, 268-274.
- 15. V. M. Dhavale, S. Kurungot, ACS Catal., 2015, 5, 1445-1452.
- J. Park, M. Risch, G. Nam, M. Park, T. J. Shin, S. Park, M. G. Kim, Y. Shao-Horn, J. Cho, *Energy Environ. Sci.*, 2017, 10, 129-136.
- S. S. Shinde, C.-H. Lee, A. Sami, D.-H. Kim, S. U. Lee, J.-H. Lee, ACS nano, 2016, 11, 347-357.
- S. Patra, R. Choudhary, E. Roy, R. Madhuri, P. K. Sharma, *Nano Energy*, 2016, 30, 118-129.
- B. Li, X. Ge, F. T. Goh, T. A. Hor, D. Geng, G. Du, Z. Liu, J. Zhang, X. Liu, Y. Zong, *Nanoscale*, 2015, 7, 1830-1838.
- Y. Li, M. Gong, Y. Liang, J. Feng, J.-E. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, *Nat. Commun.*, 2013, 4, 1805.
- M. Zeng, Y. Liu, F. Zhao, K. Nie, N. Han, X. Wang, W. Huang, X. Song, J. Zhong, Y. Li, *Adv. Funct. Mater.*, 2016, 26, 4397.

- 22. G. Nam, J. Park, M. Choi, P. Oh, S. Park, M. G. Kim, N. Park, J. Cho, J.-S. Lee, *ACS Nano*, 2015, **9**, 6493-6501.
- X. Han, X. Wu, C. Zhong, Y. Deng, N. Zhao, W. Hu, *Nano Energy*, 2016, 31, 541-550.
- 24. P. Cai, Y. Hong, S. Ci, Z. Wen, Nanoscale, 2016, 8, 20048-20055.