Supplementary Information

Large-scale Fabrication of Translucent and Repairable Superhydrophobic Spray

Coatings with Remarkable Mechanical, Chemical Durability and UV Resistance

Danfeng Zhi¹, Yao Lu², Sanjayan Sathasivam², Ivan P. Parkin², Xia Zhang^{1,2*}

¹ National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan

University, Kaifeng 475004, P.R. China. *E-mail: xia.zhang@ucl.ac.uk

² Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.

Figure S1. Coating thickness for (a) SiO₂/PU (b) SiO₂/epoxy resin on glass substrate.

Figure S2. (a) Contact angles of different droplets on different substrates that were coated with (a) SiO₂/PU and (b) SiO₂/epoxy resin, respectively.

Figure S3. The relationship between water contact angle and the mass fraction of SiO_2 nanoparticles

in (a) PU and (b) epoxy resin, respectively.

Figure S4. (a) The evolution process of the compression–release test. The change in the contact angle with recycle numbers (b) SiO₂/PU and (c) SiO₂/epoxy resin.

Fig. S4 presents the variation in the contact angle with compression-release cycles of the SiO₂/polymer coatings. It can be seen that after 200 times of compression and release processes, the

coating still retained superhydrophobic state with contact angle larger than 150°, suggesting the coating has good mechanical durability.

Figure S5. The relationship between water contact angle and sandpaper abrasion cycles for as prepared SiO₂/PU coating and the commercial coating.

Figure S6. Contact angle of coating (a) SiO_2/PU and (b) $SiO_2/epoxy$ resin as a function of UV irradiation time.

	С	Ν	0	Si
PU	53.32%	2.16%	44.53%	0%
SiO ₂ /PU	26.32%	1.25%	60.25%	12.18%
After O ₃ treated	17.81%	1.92%	67.39%	12.87%
After healing	25.91%	1.32%	61.03%	11.74%

Table S1. XPS of element content of SiO₂/PU coatings under different conditions.

Table S2. XPS of element content of SiO₂/epoxy resin under different conditions.

	С	0	Si
Epoxy	56.54%	43.45%	0%
SiO ₂ /Epoxy resin	27.73%	63.65%	8.62%
After O ₃ treated	15.32%	76.33%	8.35%
After healing	26.18%	65.95%	7.85%

Figure S7. Absorption capacity of the superhydrophobic SiO_2/PU sponge for different oils and organic solvents. The absorption capacity shows the weight of each solvent that can be collected in the sponge per gram of sponge.

Movie Captions

Movie 1

Formation of Liquid marbles. This movie demonstrates water droplets can be stabilized by adsorbed SiO₂ particles at gas–liquid interfaces.

Movie 2 and Movie 3

Durable superhydrophobicity test. The coating surface sustained its water-repellent property after damaged by knife-scratch, finger-wipe and adhesive tape peel. The filter paper coated by SiO₂/PU

Movie 4

Self-cleaning property. The dust can be easily taken away by water flow.

Movie 5

Self-cleaning property of the SiO₂/PU coating polluted by oil.

Movie 6

Video showing the continuous separation process of oil from water.