## Electronic Supplementary Information

## Direct access to ultrahigh-rate and ultrastable lithium titanate composite core/shell arrays via synergistic vertical graphene and interwoven CNTs

Zhujun Yao,<sup>*a*</sup> Xinhui Xia,<sup>\**a*</sup> Yu Zhong,<sup>*a*</sup> Yadong Wang,<sup>*b*</sup> Bowei Zhang, <sup>c</sup> Dong Xie,<sup>*a*</sup> Xiuli Wang,<sup>*a*</sup> Jiangping Tu,<sup>\**a*</sup> and Yizhong Huang<sup>\**c*</sup>



Figure S1. (a), (b) Photography of the VG/LTO-CNTs core/shell electrode.



Figure S2. SEM images of (a) pristine VG arrays, (b) VG/LTO core/shell arrays and (c) VG/LTO-CNTs core/shell arrays.



Figure S3. EDX mapping images of Ti, O, and C elements in VG/LTO-CNTs core/shell structure.



Figure S4. CV curves at different scan rates and Peak current  $I_p$  as a function of square root of scan rate  $v^{1/2}$  of (a) VG/LTO and (b) VG/LTO-CNTs electrodes; (c) Specific capacities (at different current rates) of VG/LTO and VG/LTO-CNTs electrodes; (d) CV curves of VG/LTO-CNTs electrodes at 0.1 mV S<sup>-1</sup> after 10000 cycles.



Figure S5. SEM images of (a) VG/LTO and (b) VG/LTO-CNTs electrodes after 10000 cycles at 20 C.

Table S1 Rate capacities and cycling performances of some LTO based composites reported

| Materials of electrodes           | Current rate<br>(C) | Cycle<br>number | Capacity<br>(mA h g <sup>-1</sup> ) | Degradation<br>rate per 100<br>cycles (%) | Reference |
|-----------------------------------|---------------------|-----------------|-------------------------------------|-------------------------------------------|-----------|
| LTO/RGO on copper foil            | 90                  | 1000            | 125                                 | 0.5                                       | 1         |
| LTO/C powder                      | 20                  | 1000            | 103                                 | 0.56                                      | 2         |
| LTO/CNT/CNF film                  | 10                  | 500             | 140                                 | 0.72                                      | 3         |
| $Li_4Ti_5O_{12}/Li_2TiO_3$ powder | 10                  | 500             | 106                                 | 0.36                                      | 4         |
| LTO/C powder                      | 10                  | 200             | 140                                 | 2.15                                      | 5         |
| LTO/SiO <sub>2</sub> powder       | 10                  | 100             | 142                                 | 3                                         | 6         |
| LTO/C powder                      | 10                  | 1000            | 131                                 | 0.5                                       | 7         |
| LTO nanowire arrays               | 5                   | 100             | 149                                 | 5                                         | 8         |
| LTO hollow spheres powder         | 5                   | 300             | 120                                 | 4                                         | 9         |
| LTO powder on Al foil             | 5                   | 500             | 160                                 | 0.4                                       | 10        |
| LTO/CNT powder                    | 5                   | 100             | 150                                 | 2                                         | 11        |
| LTO/C powder                      | 2                   | 2200            | 124                                 | 0.773                                     | 12        |
| LTO/C powder                      | 1                   | 100             | 157                                 | 2.4                                       | 13        |
| LTO powder                        | 1                   | 50              | 113                                 | 13.4                                      | 14        |
| VG/LTO-CNTs                       | 20                  | 10000           | 136                                 | 0.105                                     | Our work  |

in the recent literatures

## References

- Y. Tang, Y. Zhang, X. Rui, D. Qi, Y. Luo, W. R. Leow, S. Chen, J. Guo, J. Wei, W. Li, J. Deng, Y. Lai, B. Ma and X. Chen, *Adv Mater*, 2016, 28, 1567-1576.
- 2. L. Shen, X. Zhang, E. Uchaker, C. Yuan and G. Cao, Adv Energy Mater, 2012, 2, 691-698.
- 3. S. Cao, X. Feng, Y. Song, X. Xue, H. Liu, M. Miao, J. Fang and L. Shi, ACS Appl Mater Interfaces, 2015, 7, 10695-10701.
- 4. Y. Wang, A. Zhou, X. Dai, L. Feng, J. Li and J. Li, J Power Sources, 2014, 266, 114-120.
- 5. Y. Ren, P. Lu, X. Huang, S. Zhou, Y. Chen, B. Liu, F. Chu and J. Ding, *Solid State Ionics*, 2015, **274**, 83-87.
- W. Li, M. Chen, J. Jiang, R. Wu, F. Wang, W. Liu, G. Peng and M. Qu, *J Alloy Compd*, 2015, 637, 476-482.

- 7. L. Shen, H. Li, E. Uchaker, X. Zhang and G. Cao, Nano Lett, 2012, 12, 5673-5678.
- 8. L. Shen, E. Uchaker, X. Zhang and G. Cao, Adv Mater, 2012, 24, 6502-6506.
- 9. L. Yu, H. B. Wu and X. W. Lou, Adv Mater, 2013, 25, 2296-2300.
- 10. G. Hasegawa, K. Kanamori, T. Kiyomura, H. Kurata, K. Nakanishi and T. Abe, *Adv Energy Mater*, 2015, **5**, 1400730.
- 11. H. Ni and L.-Z. Fan, J Power Sources, 2012, 214, 195-199.
- 12. L. Zhao, Y. S. Hu, H. Li, Z. Wang and L. Chen, Adv Mater, 2011, 23, 1385-1388.
- 13. X. Hao and B. M. Bartlett, Adv Energy Mater, 2013, 3, 753-761.
- F. Wu, X. Li, Z. Wang, H. Guo, L. Wu, X. Xiong and X. Wang, *Powder Technol*, 2011, 213, 192-198.