Supporting Information

Controllable Synthesis of Hierarchical Ball-in-Ball Hollow Microsphere for High Performance Layered Li-Rich Oxide Cathode Material

Fu-Da Yu, Lan-Fang Que, Zhen-Bo Wang,* Yuan Xue, Yin Zhang, Bao-Sheng Liu and Da-Ming Gu*

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West-Da Zhi Street, Harbin, 150001, China

* Corresponding author. Tel.: +86-451-86417853; Fax: +86-451-86418616; E-mail: <u>wangzhb@hit.edu.cn</u> (Z. B. Wang); <u>gudmaing@hit.edu.cn</u> (D. M. Gu).

Figure S1. Typical SEM images of $Mn_{4/6}Ni_{1/6}CO_3$ precursor. The molar ratio of NH₄HCO₃ and NH₃·H₂O is (a) 0:10, (b) 1:9, (c) 2:8, (d) 3:7, (e) 5:5, (f) 10:0. The coprecipitation process was carried out with a fixed pH of 7.5 at a constant temperature of 50 °C for 5h.

Figure S2. (a-d) Typical SEM images of S-LLRO. In (c), solid interior structure of S-LLRO is showed.

Figure S3. The CV curves of the (a) HBH-LLRO and (b) S-LLRO samples during first to third cycle in a potential range of 2.0-4.8 V at a scan rate of 0.1 mV s⁻¹, and the arrows show the lattice transformation.

Figure S4. Typical SEM images of (a, b) pristine and (c, d) cycled electrode of HBH-LLRO. In (c, d), the cycled electrode of HBH-LLRO for 200 cycles at 1 C still shows a clear surface of the secondary particles and the hierarchical hollow structure of microsphere is also well preserved during long-term prolonged cycling, indicating the good structural stability of HBH-LLRO.

LLRO cathode materials	at different C-rate			Cycle life at	Capacity
	1C	5C	10C	different C-rate	retention
Hierarchical ball-in-ball hollow LLRO microsphere (This work)	223	170	132	400 cycles @3C	87.6%
Spinel-layered LLRO nanoparticle [1]	N/A	~120	~108	300 cycles@0.04C	~53%
Core-shelled Li[Li_{0.2}Mn_{0.54}Ni_{0.13}Co_{0.13}]O_{2}[2]	126	37	N/A	100 cycles @0.5C	83.6%
Dual-coated LLRO nanoparticle [3]	~212	~150	~130	300 cycles @10C	~83%
Graphene/AlPO ₄ modified LLRO nanoparticle [4]	~170	~110	N/A	100 cycles @1C	70.8%
LiFePO ₄ -coated Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ [5]	201	125	N/A	120 cycles @1C	88.2%
Li ₂ MnO ₃ -coated LLRO nanoparticle [6]	219	156	121	45 cycles @0.1C	88.8%
Fusiform-like micro/nano Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ [7]	217	158	N/A	100 cycles @1C	94%
Porous LLRO microrod [8]	226	172	N/A	50 cycles @5C	79.4%
$Li_{1.2}(Mn_{0.4}Co_{0.4})O_2$ nanorod [9]	~185	~148	~102	50 cycles @0.1C	89.9%
MnO2 nanosheets coated LLRO nanoparticle [10]	226	157	N/A	50 cycles @0.5C	93%
Nanotube assembled 3D LLRO hierarchitecture [11]	219	140	94	200 cycles @1C	80.4%

Table S1. The lithium storage properties for reported LLRO cathode materials.

Discharge capacities (mAh g⁻¹)

References:

- A. Bhaskar, S. Krueger, V. Siozios, J. Li, S. Nowak and Martin Winter, *Adv. Energy Mater.*, 2015, 5, 140115.
- Z. Q. Xie, S. Ellis, W. W. Xu, D. Dye, J. Q Zhao and Ying Wang, *Chem. Commun.*, 2015, 51, 15000.
- X. F. Bian, Q. Fu, H. L Qiu, F. Du, Yu Gao, L. J. Zhang, B. Zou, G. Chen and Y. J. Wei, *Chem. Mater.*, 2015, 27, 5745-5754.
- I. T. Kim, J. C. Knight, H. Celioa and A. Manthiram, J. Mater. Chem. A, 2014, 2, 8696-8704.
- F. H. Zheng, C. H. Yang, X. H. Xiong, J. W. Xiong, R. Z. Hu, Y. Chen and M. L. Liu, Angew. Chem. Int. Ed., 2015, 54, 1-6.
- 6. S. Kim, W. Cho, X. B. Zhang, Y. Oshima and J. W. Choi, *Nature Comm.*, 2016, 7, 13598.
- Y. Li, Y. Bai, C. Wu, J. Qian, G. H. Chen, L. Liu, H. Wang, X. Z. Zhou and Feng Wu, J. Mater. Chem. A, 2016, 4, 5942.
- 8. L. J. Zhang, B. R. Wu, N. Li and F. Wu, *Electrochim. Acta*, 2014, **118**, 67-74.
- X. L. Liu, J. J. Wu, X. L. Huang, Z. W. Liu, Y. Zhang, M. Wang and R. C. Che, *J. Mater. Chem. A*, 2014, 4, 15200.
- S. H. Guo, H. J. Yu, P. Liu, X. Z. Liu, D. Li, M. W. Chen, M. Ishidab and H. S. Zhou, J. Mater. Chem. A, 2014, 2, 4422-4428.
- F. D. Yu, L. F. Que, Z. B. Wang, Y. Zhang, Y. Xue, B. S. Liu and D. M. Gu, J. Mater. Chem. A, 2016, 4, 18416-18425.