Supporting Information

Comparative study of o, p-dimethoxyphenyl-based hole transport materials by altering π -linker units for highly efficient and stable perovskite solar cells

Xing Li, ^{a,b} Molang Cai, ^b Zhongmin Zhou, ^b Kang Yun, ^a Fengxian Xie, ^b Zhang Lan, ^b Jianli Hua *^a and Liyuan Han *^b

a. Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China. jlhua@ecust.edu.cn b. Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS). HAN.Liyuan@nims.go.jp

Device Fabrication

Fluorine-doped tin oxide (FTO) glass was washed in a detergent solution for 20 min with sonication, which was followed by consecutive rising with water, ethanol, and acetone. A dense blocking layer of TiO₂ (30 nm, bl-TiO₂) was deposited onto the FTO by spray pyrolysis, using a 20 mM titanium diisopropoxide bis(acetylacetonate) solution (Aldrich) at 500 °C. To prepare the mp- TiO₂ layer, the TiO₂ nanoparticle (30-NRT, Dyesol) paste diluted in ethanol (1:6, weight ratio) was spin coated onto the substrate at 4000 rpm for 20 s and annealed at 500 °C for 30 min, which lead to an around 170 nm thick mp- TiO₂ mesoporous film. The mixed perovskite precursor solution was prepared by dissolving FAI (1 M), PbI₂ (1.1 M), MABr (0.2 M) and PbBr₂ (0.2 M) in anhydrous mixed solvent DMF: DMSO (4:1) volume ratio. A (FAPbI₃)_{0.45} (MAPbBr₃)_{0.15} layer was formed on TiO₂ layer through spin-coating of the mixed perovskite precursor solution and 6000 rpm for 10 and 30 s respectively. During the second step, 110 μ L of chlorobenzene was poured at 15s prior to the end of the program. The substrates were then annealed at 100 °C for 60 min. The HTMs was deposited by spin-coating at 4000 rpm for 30 s. The device fabrication was finally completed by the thermal evaporation under high vacuum (< 4 ×10⁻⁵ Pa) of 80 nm thick film of Au.¹

Characterization

¹H NMR and ¹³C NMR spectra were measured at 400 and 100 MHz, respectively. Chemical shifts δ , were calibrated against TMS as an internal standard. HRMS measurements were performed by using a Waters LCT Premier XE spectrometer. The absorption spectra of the HTMs were measured with a Varian Cary 500 spectrophotometer. Fluorescence spectra were measured with a Horiba Fluoromax-4 fluorescence spectrometer. SEM images were obtained by using a SU8200 field-emission scanning electron microscope. The UV photoelectron emission spectroscopies were measured using an AC-3 spectrometer (Riken Keiki), with using an Au sample as reference.

The cyclic voltammograms were determined by using a CHI660E electrochemical workstation (Chenhua Co. Ltd, Shanghai, China) in a three-electrode cell. The working electrode was a glassy carbon

electrode, used in conjunction with a Pt auxiliary electrode and an Ag/AgCl wire reference electrode. The electrolyte consisted of 0.1 M tetra-n-butylammonium hexafluorophosphate (TBAPF₆) solution in dichloromethane containing 10^{-3} M of the dye. The Fc/Fc⁺ redox couple was used as an external potential reference. The scan rate was 50 mV/s.

Hole mobilities were measured using the space-charge-limited-current (SCLC) model with holeonly device utilizing the configuration of ITO/PEDOT:PSS/HTM/Au. According the Mott-Gurney law, hole mobilities were extrated by using the dark current under forward bias. The thicknesses of the coated films were measured by a cross-sectional SEM image. The solution concentration of hole transport materials was identical to those used to fabricate the optimized perovskite solar cell devices. HL-1: 30mg in 1 mL mixed solvent of chlorobenzene/chloroform (V/V: 2/8), an additive of 49 μL Libis(trifluoromethanesulfonyl) imide (Li-TFSI)/acetonitrile (170 mg/mL) and 28.5 μl 2-amylpyridine (2-Py). HL-2 and Spiro-OMeTAD: 30mg in 1 mL chlorobenzene, and the additives are the same as HL-1 solution. The current-voltage curve for the SCLC measurement was obtained using a CHI660E electrochemical workstation.²

The current-voltage (*J-V*) characteristics were measured using a solar simulator with standard air mass 1.5 sunlight (100 mW cm⁻², WXS-155S-10: Wacom Denso Co., Japan) under ambient conditions. The *J-V* curves were measured by forward (-0.2V to 1.2V forward bias) or reverse (1.2V to -0.2V) scans. The step voltage was fixed at 5-10 mV and the delay time was set at 200 ms. J-V curves for all devices were measured by masking the cells with a metal mask 0.09 cm² in area. Monochromatic incident photon-to-current conversion efficiency (IPCE) spectra were measured with a monochromatic incident light of 1×10^{16} photons cm⁻² in director current mode (CEP-2000BX, Bunko-Keiki). The light intensity of the solar simulator was calibrated by a standard silicon solar cell provided by PV Measurements Inc.

Fig. S1. The normalized absorption and emission spectra of HL-1 and HL-2 in CH₂Cl₂.

Fig. S2 The highest occupied molecular orbital (HOMO) energy levels of HTMs and valence band (VB) of perovskite were measured by photoelectron yield spectroscopy using an AC-3 spectrometer.

Fig. S3 Optimized structures and the dihedral angles (α and β) of HL-1 and HL-2 at the B3LYP/6-31G ³.

Fig. S4 SEM images of cross-sectional structure of the HL-2 based device.

Fig. S5 (a) Photovoltaic performance of best devices based on the Spiro-OMeTAD; (b) the devices were sealed with epoxy resin by a transparent glass stored under dark and dry condition.

Fig. S6 The histogram of efficiency fabricated with HL-1, HL-2 and Sprio-OMeTAD as HTM, respectively.

Synthesis

Compound 4b was synthesized according to published procedures.⁴ All chemicals and solvents were purchased from commercial sources and were used without further purification.

Synthesis of **3**. Under an argon atmosphere, compound **1** (327 mg, 1.0 mmol), K₂CO₃ (5 mL, 2M aqueous solution), and Pd(PPh₃)₄ (42 mg, 0.036 mmol) were dissolved in THF (20 mL). After the mixture was stirred for 30 min and heated to 50°C, a solution of compound 2 (400 mg, 2.2 mmol) in THF (10 mL) was added slowly, and the mixture was heated at reflux for a further 12 h. After cooling to room temperature, the mixture was extracted with CH₂Cl₂. The combined organic layers were washed with brine and dried with anhydrous Na₂SO₄. After removing the solvent under reduced pressure, the residue was purified by column chromatography on silica gel with petroleum ether/CH₂Cl₂ (5:1–1:1, v/v) as the eluent to give compound 3 (410 mg, 93 %). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.24 (s, 1H), 7.33 (d, *J* = 8.4 Hz, 4H), 7.19 (d, *J* = 8.2 Hz, 2H), 7.11 (d, *J* = 8.4 Hz, 4H), 6.64 (d, *J* = 2.4 Hz, 2H), 6.59 (dd, *J* = 2.4 Hz, *J* = 2.4 Hz, 2H), 3.78 (d, *J* = 1.2 Hz, 12H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 159.45, 157.01, 141.80, 130.35, 129.80, 129.28, 122.51, 116.18, 105.15, 98.91, 55.44, 55.19. HRMS (m/z): [M+H⁺] calcd for C₂₈H₂₈N₁O₄, 442.2018; found: 442.2012.

Synthesis of **HL-1**. Under an argon atmosphere, compound **3** (363 mg, 0.82 mmol), compound **4a** (162 mg, 0.4 mmol), PdCl₂ (18 mg, 0.1 mmol) and NaOtBu (115 mg, 1.2 mmol) were dissolved in 30 mL of toluene, then 0.5 mL PhP₃ was added slowly. The mixture was refluxed for 12 h before cooling to room temperature, adding 1 mL saturated NH₄Cl solution and extracted with CH₂Cl₂. The organic layers

were washed with brine water and dried over anhydrous Na₂SO₄. After removing the solvent under reduced pressure, the residue was chromatographed on a silica gel column with PE/CH₂Cl₂ (3/1–2/1, v/v) as eluent to give white compound **HL-1** (360 mg, 87 % yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.59 (d, *J* = 8.8 Hz, 4H), 7.42 (d, *J* = 8.8 Hz, 8H), 7.24 (d, *J* = 8.4 Hz, 4H), 7.24 (t, *J* = 8.4 Hz, 12H), 6.66 (d, *J* = 2.4 Hz, 4H), 6.60 (dd, *J* = 2.4 Hz, *J* = 2.4 Hz, 4H), 3.79 (d, *J* = 8.0 Hz, 24H). ¹³C NMR (100 MHz, CDCl₃): δ = 160.05, 157.45, 146.69, 146.03, 134.81, 132.62, 131.06, 130.13, 127.29, 124.40, 123.71, 123.14, 104.63, 99.02, 55.54, 55.43. HRMS (m/z): [M+H⁺] calcd for C₆₈H₆₁N₂O₈, 1033.4428; found: 1033.4431.

Synthesis of **HL-2**. Compound **HL-2** was obtained by using a similar procedure to that of compound **HL-1** (390 mg, 86 % yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.90 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 8H), 7.21(s, 2H), 7.16 (d, *J* = 8.4 Hz, 4H), 7.03 (d, *J* = 8.4 Hz, 8H), 6.87 (d, *J* = 8.4 Hz, 2H), 6.63 (d, *J* = 2.4 Hz, 4H), 6.54 (dd, *J* = 2.4 Hz, 4H), 3.99 (s, 2H), 3.76 (s, 12H), 3.73(s, 12H), 1.50-1.47 (m, 2H), 0.85-0.82 (m, 6H), 0.62-0.64 (m, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ = 159.73, 157.03, 145.87, 144.81, 141.53, 131.94, 130.52, 129.84, 122.51, 121.88, 120.66, 118.50, 117.18, 105.49, 105.15, 98.85, 55.36, 55.13, 34.15, 30.93, 30.82, 28.44, 26.02, 24.74, 22.03, 21.79, 13.91, 13.61, 11.19. HRMS (m/z): [M+H⁺] calcd for C₇₄H₇₂N₃O₈, 1130.5335; found: 1130.5339.

Fig. S7 ¹H NRM (DMSO-*d*₆) spectrum of compound **3**.

Fig. S10 ¹H NRM (DMSO-*d*₆) spectrum of compound **HL-1**.

Number of isotope peaks used for i-FII = 3 Monoisotopic Mass, Even Electron Ions 13 formula(e) evaluated with 1 results within limits (up to 1 closest results for each mass) Elements Used: C: 0-68 H: 0-61 N: 0-2 O: 0-8 JL-HUA ECUST institute of Fine Chem

19-Jun-2016 20:06:02 1: TOF MS ES+ 1.10e+003 HL-YF-702 54 (0.422) Cm (52:56) 1033,4431 100₋ 1032.4341 1034.4413 %-1035.4552
 1
 849.6385
 863.4996
 893.6544
 937.6761
 1133.4426

 2

Minimum: Maximum: $^{-1.5}_{100.0}$ 300.0 50.0 Mass Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula 1033.4431 1033.4428 0.3 0.3 39.5 16.8 0.0 C68 H61 N2 O8

Fig. S12 HR-MS spectrum of compound HL-1.

Fig. S15 HR-MS spectrum of compound HL-2.

Reference:

- 1. Y. Yue, N. T. Salim, Y. Wu, X. Yang, A. Islam, W. Chen, J. Liu, E. Bi, F. Xie, M. Cai and L. Han, *Adv. Mater.*, 2016, 28, 10738-10743.
- I. Cho, N. J. Jeon, O. K. Kwon, D. W. Kim, E. H. Jung, J. H. Noh, J. Seo, S. I. Seok and S. Y. Park, *Chem. Sci.*, 2017, 8, 734-741.
- 3. A. D. Becke, J. Chem. Phys., 1993, 98, 1372-1377.
- 4. M. Y. Wong, G. J. Hedley, G. Xie, L. S. Kölln, I. D. W. Samuel, A. Pertegas, H. J. Bolink and E. Zysman-Colman, *Chem. Mater.*, 2015, 27, 6535–6542.