## **Electronic Supplementary Information**

## Tuning pseudocapacitive and battery-like lithium intercalation in vanadium dioxide/carbon onion hybrids for asymmetric supercapacitor anodes

Simon Fleischmann,<sup>1,2</sup> Marco Zeiger,<sup>1,2</sup> Nicolas Jäckel,<sup>1,2</sup> Benjamin Krüner,<sup>1,2</sup> Valeria Lemkova,<sup>1,2</sup> Mathias Widmaier,<sup>2,3</sup> and Volker Presser<sup>1,2,\*</sup>

- <sup>1</sup> INM Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- <sup>2</sup> Department of Materials Science and Engineering, Saarland University, 66123 Saarbrücken, Germany
- <sup>3</sup> Robert Bosch GmbH, 70049 Stuttgart, Germany
- \* Corresponding author's eMail: volker.presser@leibniz-inm.de



**Figure S1**: Transmission electron micrographs of (A) VO<sub>2</sub>-OLC30-hybrid and (B) VO<sub>2</sub>-OLC30-composite samples.



**Figure S2**: Thermogravimetric analysis of (A) VO<sub>2</sub>-OLC-hybrid samples and (B) VO<sub>2</sub>-OLC-composite samples and pristine VO<sub>2</sub> nanoflowers, carried out in synthetic air (flow rate of 20 mL·min<sup>-1</sup>) up to a temperature of 550 °C at a heating rate of 5 °C·min<sup>-1</sup>.



**Figure S3**: Nitrogen sorption isotherms at standard temperature and pressure of (A) VO<sub>2</sub>-OLC-hybrid samples and (B) VO<sub>2</sub>-OLC30-composite sample. The dashed lines correspond to the desorption branch.



**Figure S4**: Crystal structures of the monoclinic VO<sub>2</sub> structure in (A) C2/m and (B) P2<sub>1</sub>/c space group. The vanadium atoms are represented by white spheres, oxygen atoms by red spheres. The distances between the shared oxygen atoms at the corners of the octahedra show a fixed distance of 3.3 Å for C2/m and a varying distance between 2.9 Å and 6.4 Å for P2<sub>1</sub>/c.



**Figure S5**: CVs of (A) VO<sub>2</sub>-OLC30-hybrid, (B) VO<sub>2</sub>-OLC40-hybrid, and (C) VO<sub>2</sub>-OLC30-composite samples measured in half-cells and varying scanning speeds of 10-1000 mV·s<sup>-1</sup>. (D) Kinetic analysis via logarithmic plotting of the peak current at -0.7 V vs. carbon against the scan rate and linear regression applied to the data points.

**Table S1**: Electrode conductivity of  $VO_2$ -OLC30-hybrid and  $VO_2$ -OLC30-composite electrodes by 4-point probe as an average of six measurements.

| Material                         | Electrode conductivity<br>(S·cm <sup>-1</sup> ) |  |
|----------------------------------|-------------------------------------------------|--|
| VO <sub>2</sub> -OLC30-hybrid    | 0.30 ± 0.03                                     |  |
| VO <sub>2</sub> -OLC30-composite | 0.16 ± 0.05                                     |  |

**Table S2**: Specific surface area (BET) and pore volume (at  $P/P_0=0.95$ ) of VO<sub>2</sub>-OLC samples and as synthesized vanadium oxide nanoflowers and carbon onions.

| Material                         | SSA (BET)<br>(m²·g⁻¹) | Pore volume<br>(cm <sup>3</sup> ·g <sup>-1</sup> ) |
|----------------------------------|-----------------------|----------------------------------------------------|
| VO <sub>2</sub> -OLC20-hybrid    | 81                    | 0.15                                               |
| VO <sub>2</sub> -OLC30-hybrid    | 89                    | 0.21                                               |
| VO <sub>2</sub> -OLC40-hybrid    | 160                   | 0.41                                               |
| VO <sub>2</sub> -OLC30-composite | 118                   | 0.31                                               |
| VO₂ as synthesized               | 38                    | 0.04                                               |
| OLCs as synthesized              | 352                   | 0.93                                               |

**Table S3**: Analysis of D- and G-bands of the samples VO<sub>2</sub>-OLC30-hybrid and VO<sub>2</sub>-OLC30-composite, calculated by peak deconvolution.

| Material                         | FWHM D<br>(cm <sup>-1</sup> ) | FWHM G<br>(cm <sup>-1</sup> ) | I⊳/I <sub>G</sub> | Pos. D-band<br>(cm <sup>-1</sup> ) | Pos. G-band<br>(cm <sup>-1</sup> ) |
|----------------------------------|-------------------------------|-------------------------------|-------------------|------------------------------------|------------------------------------|
| VO <sub>2</sub> -OLC30-hybrid    | 69                            | 48                            | 2.7               | 1347                               | 1590                               |
| VO <sub>2</sub> -OLC30-composite | 58                            | 40                            | 2.3               | 1347                               | 1587                               |