Supporting Information

Li₄Ti₅O₁₂-TiO₂/MoO₂ Nanoclusters-Embedded into Carbon Nanosheets

Core/Shell Porous Superstructures Boost Lithium Ion Storage

Yong Yang, ^a Shitong Wang, ^b Mingchuan Luo, ^a Wei Wang, ^a Fan Lv, ^a Zilong Tang, ^{b*} Shaojun Guo ^a, ^c, ^{d*}

Figure S1. SEM image of LHTO-NWs.

Figure S2. (a-b) SEM and TEM images of as-prepared LHTO/Mo-PDA core/shell composites.

Figure S4. (a, c) STEM and (b, d) HRTEM images of LTO-TO@MoO₂/C.

Figure S5. (a) TEM image and (b) XRD pattern of solid Mo-PDA nanospheres; (c) TEM image and (d) XRD pattern of MoO₂/C nanospheres.

Figure S6. XPS spectrum of as-prepared LTO-TO@MoO₂/C composite.

Figure S7. Raman spectrum of the as-prepared LTO-TO@MoO₂/C composite.

Figure S8. TG curve of the LTO-TO@MoO₂/C composite from 100 to 600 °C under air gas flow with a temperature ramp of 10 °C min⁻¹. The final weight loss of TiO₂@MoO₂/C was caused by carbon decomposition in air (C + O₂ \rightarrow CO₂) and the oxidation of MoO₂ (MoO₂ + O₂ \rightarrow MoO₃).

Figure S9. (a) TEM image of as-prepared LTO-TO@C composites. (b) SEM image of LTO-TO composites. (c) XRD patterns of LTO-TO@C and LTO-TO. Compared with the peak intensity of LTO-TO@C and LTO-TO, the relative intensity of $Li_4Ti_5O_{12}$ to TiO_2 in LTO-TO@MoO₂/C composite is minimum. The possible reason for the variable Li/Ti ratio was attributed to the consumption of $Li_4Ti_5O_{12}$ during the fabrication of $Li_{1.81}H_{0.19}Ti_2O_5 \cdot H_2O@Mo-PDA$ due to the weak alkaline environment.

Figure S10. N₂ adsorption/desorption isotherms of (a) LTO-TO@C and (b) LTO-TO.

Figure S11. The first charge–discharge profiles of the LTO-TO@MoO₂/C, LTO-TO@C and LTO-TO at 100 mA g⁻¹. The charge and discharge capacities for LTO-TO@MoO₂/C are 534.5 and 903.3 mAh g⁻¹, respectively, with a Coulombic efficiency of 60 %. The charge and discharge capacities for LTO-TO@C are 224.8 and 345.4 mAh g⁻¹, respectively, with a Coulombic efficiency of 65 %. The charge and discharge capacities for LTO-TO are 185.2 and 293.2 mAh g⁻¹, respectively, with a Coulombic efficiency of 63 %.

Figure S12. Galvanostatic charge–discharge profiles of the LTO-TO@C electrode at different current densities.

Figure S13. Galvanostatic charge-discharge profiles of the LTO-TO electrode at different current densities.

Figure S14 Cycling performances for LTO-TO@MoO₂/C and MoO₂/C at 500 mA g⁻¹.

In order to show the synthetic effect of composites, we also compared the electrochemical performance of the MoO₂/C composites (Fig. S14). The MoO₂/C nanospheres were synthesized via the same method without adding the LHTO-NWs and keeping the other heating experimental variables fixed (Fig. S5). It was found that the specific capacity of MoO₂/C drops rapidly during its whole cycle life, with the capacity retention of only 32% after 500 cycles. As a contrast the LTO-TO@MoO₂/C shows better stability than MoO₂/C. The specific capacity of LTO-TO@MoO₂/C even increases gradually up to 600 mAh g⁻¹ after 500 cycles, further demonstrating its high stability.

Table S1. Comparison of this work with previously reported Ti-based composites. Their electrode

Electrode materials	Electrode compositions	Loading density (mg cm ⁻²)	Capacity after cycles (mAh g ⁻¹)	Ref.
Li ₄ Ti ₅ O ₁₂ -TiO ₂ @MoO ₂ /C 3D heterostructures	80:10:10	~1.0	413, 500 cycles (1000 mA g ⁻¹)	This work
Li ₄ Ti ₅ O ₁₂ /TiO ₂	75:15:10	N/A	139, 100 cycles (1000 mA g ⁻¹)	[1]
$Li_4Ti_5O_{12}/MoS_2$	80:10:10	0.9-1.8	~160, 1000 cycles (10 C)	[2]
Li ₄ Ti ₅ O ₁₂ /TiO ₂ /C	80:10:10	2-3	101, 200 cycles (2000 mA g ⁻¹)	[3]
Li ₄ Ti ₅ O ₁₂ /NiO	80:10:10	N/A	176, 100 cycles (1C)	[4]
Li ₄ Ti ₅ O ₁₂ /rGO	80:10:10	N/A	187, 100 cycles (1C)	[5]
Li ₄ Ti ₅ O ₁₂ -TiO ₂ -Sn/C	80:10:10	~1.0	360, 600 cycles (1000 mA g ⁻¹)	[6]
${\rm Li}_4{\rm Ti}_5{\rm O}_{12}/{\rm Sn}$	85:9:8	N/A	295, 30 cycles (0.02 C)	[7]
Li ₄ Ti ₅ O ₁₂ -Sn	80:10:10	N/A	224, 50 cycles (100 mA g ⁻¹)	[8]
Li ₄ Ti ₅ O ₁₂ /Sb/C	70:20:10	~2	236, 500 cycles (200 mA g ⁻¹)	[9]
$Li_4Ti_5O_{12}/Co_3O_4$	80:10:10	N/A	~300, 50 cycles (160 mA g ⁻¹)	[10]
a-Fe ₂ O ₃ @Li ₄ Ti ₅ O ₁₂	80:10:10	N/A	249, 30 cycles (100 mA g ⁻¹)	[11]
SnO ₂ @Li ₄ Ti ₅ O ₁₂	80:10:10	N/A	457, 30 cycles (100 mA g ⁻¹)	[12]

compositions are listed using the mass ratio of active materials: conductive carbon: binder.

References:

- [1] Y. M. Jiang, K. X. Wang, H. J. Zhang. et al., Sci. Rep. 2011, 3, 3490.
- [2] G. Xu, L. Yang, X. Wei. et al., Adv. Funct. Mater. 2016, 26, 3349-3358.
- [3] W. Zhu, H. Yang, W. Zhang. et al., RSC Adv., 2015, 5, 74774-74782.
- [4] C. Zhang, D. Shao, Q. Gao, Y. Lu, Z. Liu, X. Yu, Y. Fang, D. Chen, J. Solid State Electr. 2015, 19, 1859-1866.
- [5] C. Chen, Y. Huang, H. Zhang. et al., J. Power Sources. 2015, 278, 693-702.
- [6] S. Wang, Y. Yang, C. Jiang, et al., J. Mater. Chem. A, 2016, 4, 12714-12719.
- [7] A.Sivashanmugam, S.Gopukumar, R. Thirunakaran, et al., Mater. Res. Bull. 2011, 46, 492-500.
- [8] R. Cai, X. Yu, X. Liu, Z. Shao, J. Power Sources. 2010, 195, 8244-8250.
- [9] T. Zeng, X. Hu, P. Ji, et al., *Electrochimica Acta*. 2016, 217, 299-309.
- [10] J. Hong, R. Oh, K. Ryu, J. Electrochem. Soc. 2015, 162, 1978-1983.
- [11] M. Chen, W. Li, X. Shen, G. Diao, Acs Appl. Mater. Inter. 2014, 6, 4514-4523.
- [12] G. Ji, Y. Ma, B. Ding, J. Y. Lee, Chem. Mater. 2012, 24, 3329-3334.