

Figure S1. XRD patterns of the precursor ZIF-67 and simulated ZIF-67.

²⁹ electrodes.

48

- 50 electrodes at current density of 1 A g^{-1} .
- 51
- 52 Table S1. The comparison of Li-storage performance between Co_xP-NC-800 and

Name	Current density	Charge capacity	Cycle	Reference
	$(mA g^{-1})$	$(mA h g^{-1})$	number	
CoP hollow	178	630	100	Ref 31
sphere				
Co ₂ P/graphene	100	888	250	Ref 36
CoP@C	180/900	654/530	100/200	Ref 37
nanorods				
CoP/RGO	200	960	200	Ref 5
Co _x P-NC-800	100	1224	100	This work
	1000	550/400	1000/1800	This work

53 other cobalt phosphides electrode materials.

- 55
- 56 Figure S7. SEM images of Co_xP-NC-800 electrode after 1800 cycles at a current
- 57 density of 1 A g⁻¹.
- 58

- 60 Figure S8. Coulombic efficiency of Co_xP-NC-700 (a), Co_xP-NC-800 (b) and Co_xP-
- 61 NC-900 (c) corresponding to rate performance respectively.

63 Figure S8. TGA curve of Co_xP-NC-800 in air.

62

The initial weight loss of 9 % could be the weight of water, which were absorbed 64 65 from the air. Then followed by the combustion of carbon, and gradual oxidation of Co_xP to Co₃O₄, P₂O₅. Since the Co_xP nanoparticles are homogeneously distributed in carbon 66 67 network, the combustion of carbon could be the majority between 300-400 °C , and a significant weight loss could happen. Then next gradual oxidation can happen. The final 68 69 product is Co₃O₄ with remaining weight of 74 wt.%. The Co content estimated to be 59.7 wt.% in the Co_xP-NC-800 according to the following equation: 74 wt.% * M(Co)/ 70 71 $M(Co_3O_4)/(1-9 \text{ wt.\%}) \approx 59.7 \text{ wt.\%}.$

Figure S9. SEM image of Co_xP-NC-700 samples.

Figure S10. SEM graph of Co_xP-NC-900 samples.