Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2017

Supporting Information

Enhanced solvent-free selective oxidation of cyclohexene to

1,2-cyclohexanediol by polyaniline@halloysite nanotubes

Tianzhu Zhou, Yue Zhao, Wenmei Han, Huazhong Xie, Cuiping Li* and

Mingquan Yuan*

School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural

Resource, Ministry of Education, Yunnan University, Kunming 650091, China

*To whom correspondence should be addressed, E-mail: licp830@iccas.ac.cn and yuanmingquan@ynu.edu.cn

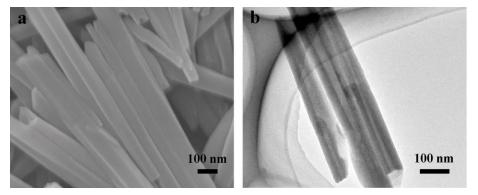
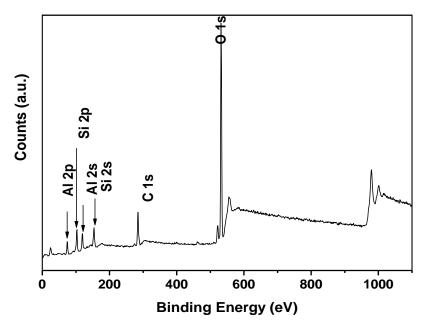
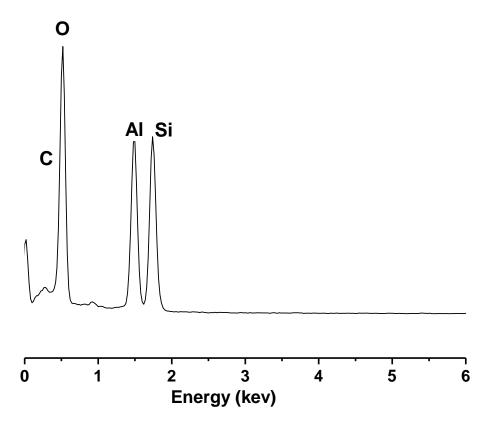
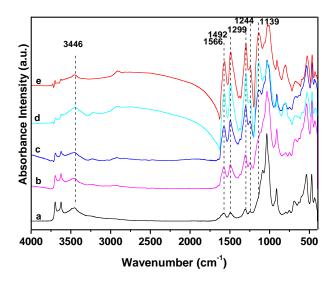


Fig. S1 SEM (a) and TEM (b) of halloysite nanotubes (HA).

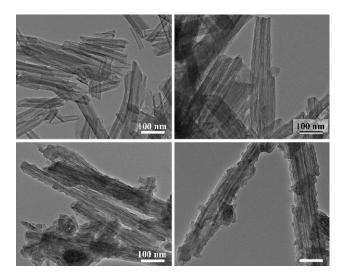

Fig. S2 XPS spectra of halloysite nanotubes (HA) (C peak from the adventitious elemental carbon).

Fig. S3 EDX spectroscopy of halloysite nanotubes (HA) (C peak from the carbon-coated copper grids).

Fig. S4 FT-IR spectra of the PANI@HA nanotubes fabricated in 1 M HCl with different ANI/HA weight ratio: (a) 0.10, (b) 0.41, (c) 1.02, (d) 2.04, (e) 2.24.

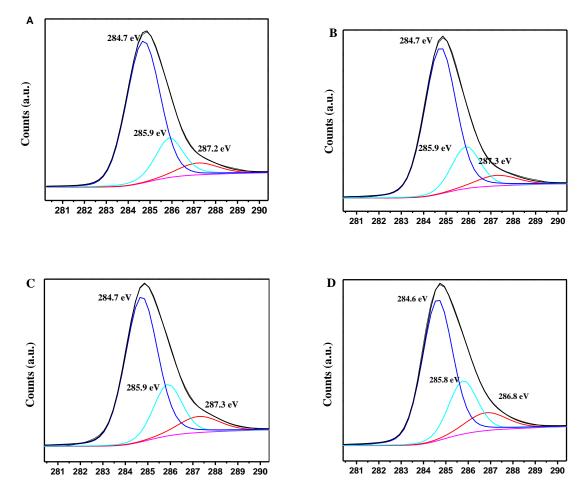

Fig. S5 TEM images of the PANI@HA nanotubes fabricated in 1 M HCl with different ANI/HA weight ratio: (a) 0.10, (b) 0.41, (c) 1.02 and (d) 2.04.

Table S1 Chemical com	position of HA a	and PANI@HA/1 M/2.04-H.

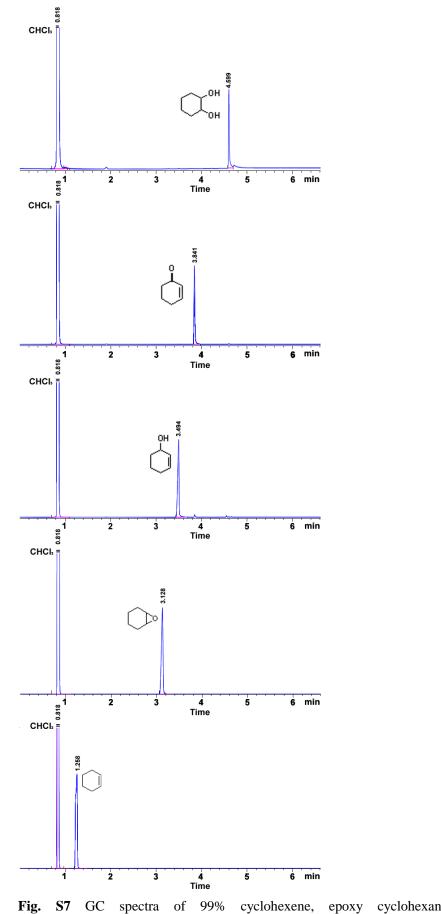

Sample		Atomic concentration (%)						
	Si	Al	0	С	Ν	Cl	S	Р
HA	13.7	10.1	55.5	20.7	-	-	-	-
PANI@HA/1M/2.04-H ₃ PO ₄	0.9	0.8	13.5	76.3	8.4	-	-	0.1
PANI@HA/1M/2.04-HNO3	1.7	1.4	14.7	74.2	8.0	-	-	-
PANI@HA/1M/2.04-H ₂ SO ₄	1.0	1.0	15.6	71.7	10.0	-	0.7	-
PANI@HA/1 M/2.04-HCl	1.0	1.0	13.8	71.8	11.5	0.8	-	-

Table S2 Mass ratio, doping degree and Q/B of PANI in PANI@HA/A/W-H.

	The acidity	Mass ratio	Doping	Q/B
Sample	tuned by	of PANI	degree d	of
		(%)	PANI (%)	
PANI@HA/1 M/2.04-H ₃ PO ₄	H_3PO_4	51.8	26.6	1.32
PANI@HA/1 M/2.04-HNO3	HNO ₃	42.5	27.3	1.24
PANI@HA/1 M/2.04-H ₂ SO ₄	H_2SO_4	45.9	29.1	1.20
PANI@HA/1 M/2.04-HCl	HCl	36.8	34.7	1.00
PANI@HA/0.3 M/2.04-HCl	HCl	35.2	-	-
PANI@HA/0.03 M/2.04-HCl	HC1	34.7	-	-

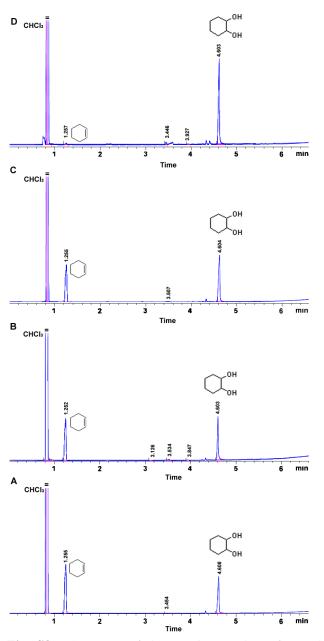
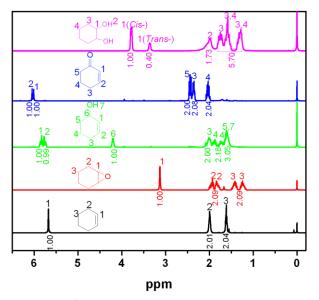


Fig. S6 C1s deconvoluted spectra of PANI@HA/1 M/2.04-H: the acidity of the starting solutions is respectively adjusted by A) H₃PO₄, B) HNO₃, C) H₂SO₄ and D) HCl.



cyclohexene, epoxy cyclohexane, 2-cyclohexen-1-ol,

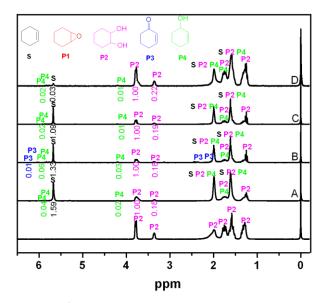

2-cyclohexen-1-one and 1,2-cyclohexandiol.

Fig. S8 GC spectra of the reaction products for cyclohexene oxidation with A) PANI@HA/1 M/2.04-H₃PO₄, B) PANI@HA/1 M/2.04-HNO₃, C) PANI@HA/1 M/2.04-H₂SO₄ and D) PANI@HA/1 M/2.04-HCl as catalyst.

Fig. S9 ¹H NMR spectra (300MHz, CDCl₃) of cyclohexene, epoxy cyclohexane, 2-cyclohexen-1-ol, 2-cyclohexen-1-one, and 1,2-cyclohexandiol.

Fig. S10 ¹H NMR spectra (300MHz, CDCl₃) of the reaction products for cyclohexene oxidation with A) PANI@HA/1 M/2.04-H₃PO₄, B) PANI@HA/1 M/2.04-HNO₃, C) PANI@HA/1 M/2.04-H₂SO₄ and D) PANI@HA/1 M/2.04-HCl as catalyst. The bottom ¹H NMR spectrum is 99% 1,2-cyclohexandiol.

]	Product selectivity (%)				
PANI@HA/1 M/W-HCl	0	ОН	o	OH	Conversion (%)	
PANI@HA/1 M/0.20-HCl	1.57	95.87	0	2.56	4.26	
PANI@HA/1 M/0.41-HCl	0.85	96.72	0	2.43	12.77	
PANI@HA/1 M/1.02-HCl	0.57	97.28	0	2.16	32.87	
PANI@HA/1 M/2.04-HCl	0	99.50	0.05	0.45	98.17	
PANI@HA/1 M/2.24-HCl	0	99.05	0	0.95	98.32	

Table S3 Effect of ANI/HA weight ratio in the fabrication on selective oxidation of cyclohexene with PANI@HA/1 M/W-HCl as catalyst.

Reaction conditions: 20 mg catalyst, 1.23 mL cyclohexene, 2.5 mL H₂O₂, 70 °C, 24 h.

Table S4 Effect of reaction time on selective oxidation of cyclohexene with PANI@HA/1 M/2.04-HCl as catalyst.

		Product select	tivity (%)		_
Reaction time (h)	0	ОН	o	OH	Conversion (%)
0.5	5.54	83.90	2.99	7.56	0.31
1	4.12	86.88	4.75	4.25	0.38
2	2.74	89.21	1.11	6.94	0.40
4	0.79	97.46	0.34	1.39	0.83
8	0.45	98.38	0	1.17	7.35
12	0.14	99.07	0	0.79	44.64
16	0	99.23	0	0.77	87.12
20	0	99.38	0	0.62	92.34
24	0	99.50	0.05	0.45	98.17
48	0	94.07	0	5.93	99.69

Reaction conditions: 20 mg catalyst, 1.23 mL cyclohexene, 2.5 mL H₂O₂, 70 °C.

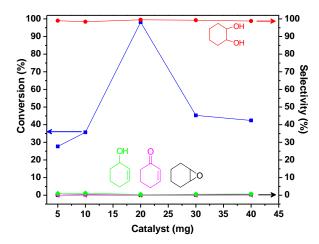
		Product select	tivity (%)		_
T (°C)	0	ОН	O	OH	Conversion (%)
30	0.95	90.91	3.07	5.08	0.49
40	0.89	95.09	0.60	3.41	0.65
50	0.62	97.6	0	1.79	1.17
60	0.21	99.49	0	0.30	46.78
70	0	99.50	0.05	0.45	98.17
80	0	99.71	0	0.29	99.00

Table S5 Effect of reaction temperature	on selective oxidation	n of cyclohexene with PANI@H	(A/1
M/2.04-HCl as catalyst.			

Reaction conditions: 20 mg catalyst, 1.23 mL cyclohexene, 2.5 mL H_2O_2 , 24 h.

Table S6 Effect of solvent on selective oxidation of cyclohexene with PANI@HA/1 M/2.04-HCl as catalyst.

		Product sele	ctivity (%)		_
Solvent	0	ОН	O	OH	Conversion (%)
Solvent-free	0	99.50	0.05	0.45	98.17
n-Heptane	0.78	98.33	0	0.89	3.79
THF	1.09	96.50	0.32	2.08	3.63
$CH_2Cl_2^a$	3.39	88.59	4.49	3.54	1.66
CHCl ₃	3.88	91.79	0.63	3.70	5.32
CH ₃ CN	0.66	94.61	2.71	2.02	29.01
DMSO	24.35	65.63	10.01	0	40.68


^aCyclohexene oxidation according to the oxidation process of method B.

Reaction conditions: 20 mg catalyst, 1.23 mL cyclohexene, 2.5 mL H₂O₂, 70 °C, 24 h.

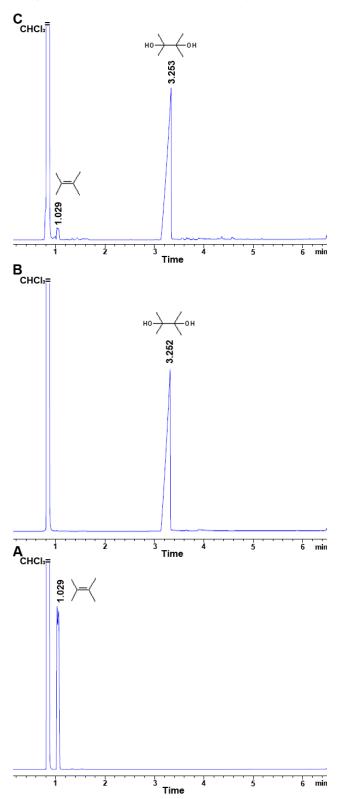
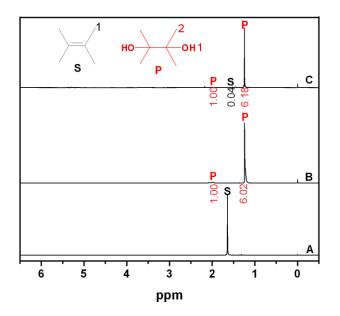

		Product Sel	ectivity (%)		_
Oxidant	0	ОН	o U	OH	Conversion (%)
H ₂ O ₂ -free	1.79	52.39	18.90	26.92	2.91
$1.3\ mL\ H_2O_2$	0.29	99.27	0.15	0.28	38.62
$2.5\ mL\ H_2O_2$	0	99.50	0.05	0.45	98.17
$5.0\ mL\ H_2O_2$	0.48	97.28	0.26	1.99	40.69
$7.5\ mL\ H_2O_2$	0	98.91	0.16	0.94	26.56
O_2	3.71	67.91	11.89	16.49	5.20
Air	1.79	52.39	18.90	26.92	2.91

Table S7 Effect of oxidant on selective oxidation of cyclohexene with PANI@HA/1 M/2.04-HClas catalyst.


Reaction conditions: 20 mg catalyst, 1.23 mL cyclohexene, 70 °C, 24 h.

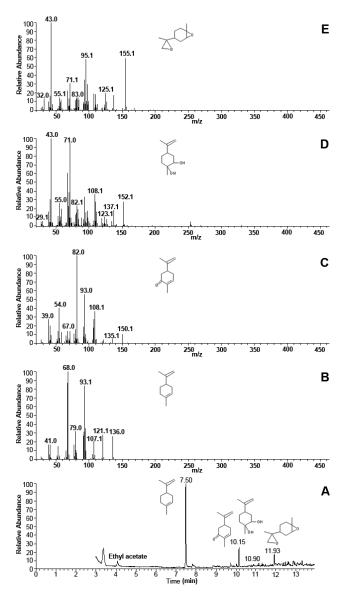

Fig. S11 Effect of catalyst amount on selective oxidation of cyclohexene with PANI@HA/1 M/2.04-HCl as catalyst.

Fig. S12 GC spectra of (A) 98% 2,3-dimethyl-2-butene, (B) 98% 2,3-dimethyl-2,3-butanediol (pinacol) and (C) the reaction products for 2,3-dimethyl-2-butene oxidation with PANI@HA/1 M/2.04-HCl as catalyst at 70 °C.

Fig. S13 ¹H NMR spectra (300MHz, CDCl₃) of (A) 98% 2,3-dimethyl-2-butene, (B) 98% 2,3-dimethyl-2,3-butanediol (pinacol) and (C) the reaction products for 2,3-dimethyl-2-butene oxidation with PANI@HA/1 M/2.04-HCl as catalyst at 70 $^{\circ}$ C.

Fig. S14 (A) GC spectra of the reaction products for (R)-(+)-limonene oxidation with PANI@HA/1 M/2.04-HCl as catalyst at 90 °C; (B), (C), (D) and (E) the MS spectra of (A) at the retention time of 7.50, 10.15, 10.90 and 11.93 min, respectively.

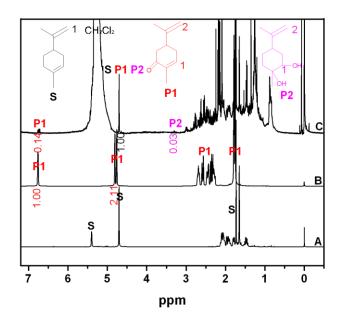
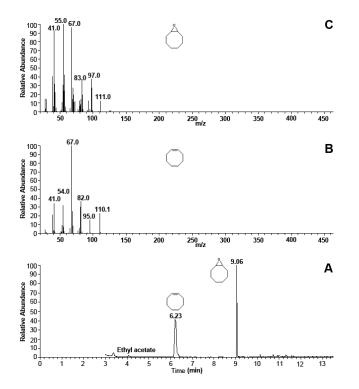
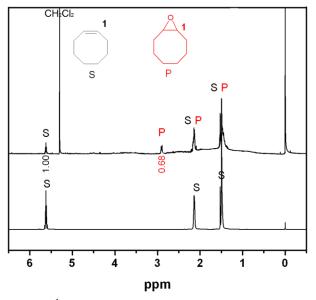
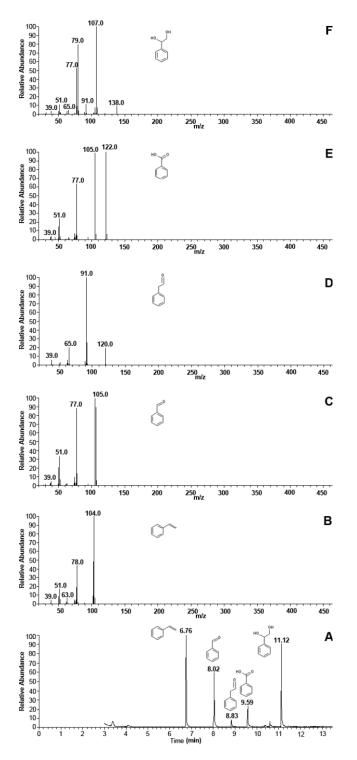
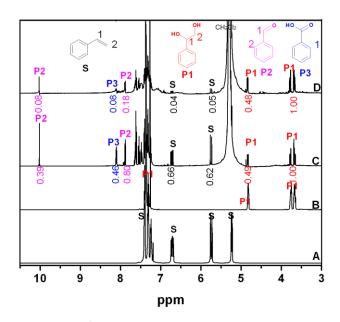
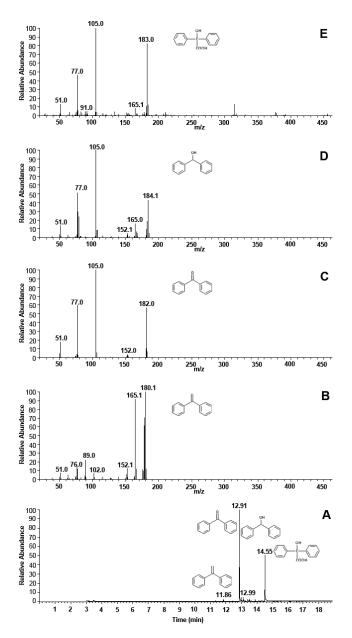



Fig. S15 ¹H NMR spectra (300MHz, CDCl₃) of (A) 97% (R)-(+)-limonene, (B) 98% (R)-(-)-carvone, (C) the reaction products for (R)-(+)-limonene oxidation with PANI@HA/1 M/2.04-HCl as catalyst at 90 °C.

Fig. S16 (A) GC spectra of the reaction products for cyclooctene oxidation with PANI@HA/1 M/2.04-HCl as catalyst at 90 °C; (B) and (C) the MS spectra of (A) at the retention time of 6.23 and 9.06 min, respectively.


Fig. S17 ¹H NMR spectra (300MHz, CDCl₃) of the reaction products for cyclooctene oxidation with PANI@HA/1 M/2.04-HCl as catalyst at 90 °C. The bottom ¹H NMR spectrum is 96% cyclooctene.

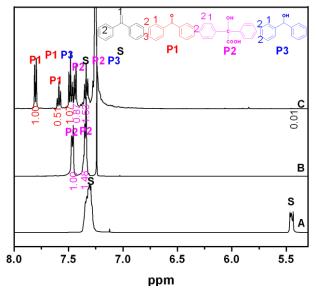

Fig. S18 (A) GC spectra of the reaction products for styrene oxidation with PANI@HA/1 M/2.04-HCl as catalyst at 80 °C; (B), (C), (D), (E) and (F) the MS spectra of (A) at the retention time of 6.76, 8.02, 8.83, 9.59 and 11.12 min, respectively.

Fig. S19 ¹H NMR spectra (300MHz, CDCl₃) of (A) 98% styrene, (B) 99% 1-phenyl-1,2-ethanediol; (C) and (D) the reaction products for styrene oxidation with PANI@HA/1 M/2.04-HCl as catalyst at 80 °C and 90 °C, respectively.

Fig. S20 (A) GC spectra of the reaction products for 1,1-diphenyl ethylene oxidation with PANI@HA/1 M/2.04-HCl as catalyst at 90 °C; (B), (C), (D) and (E) the MS spectra of (A) at the retention time of 11.86, 12.91, 12.99 and 14.55 min, respectively.

Fig. S21 ¹H NMR spectra (300MHz, CDCl₃) of (A) 98% 1,1-diphenyl ethylene, (B) 98% 2,2-diphenyl-2-hydroxyacetic acid and (C) the reaction products for 1,1-diphenyl ethylene oxidation with PANI@HA/1 M/2.04-HCl as catalyst at 90 $^{\circ}$ C.

		Product Selec	tivity (%)		
Cycles	0	ОН	o	OH	Conversion (%)
1	0	99.50	0.05	0.45	98.17
2	0	97.16	0.52	2.32	98.78
3	0	91.66	0.47	7.91	99.43
4	0	95.15	0.20	4.65	99.45
5	0	96.92	1.21	1.87	99.11

Table S8 Recycling study with PANI@HA/1M/2.04-HCl as catalyst.

Reaction conditions: 20 mg catalyst, 1.23 mL cyclohexene, 2.5 mL H_2O_2, 70 °C, 24 h.