Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

## **Supporting Information**

## Hexanuclear Cobalt Metal–Organic Frameworks for Efficient CO<sub>2</sub> Reduction under Visible Light

Jiao Zhao<sup>†</sup>, Qi Wang<sup>†</sup>, Chunyi Sun<sup>\*</sup>, Tiantian Zheng, Likai Yan<sup>\*</sup>, Mengting Li, Kuizhan Shao, Xinlong Wang<sup>\*</sup> and Zhongmin Su

## **Computational details**

Our first-principle calculation was based on density functional theory (DFT) and performed in the SIESTA (Spanish Initiative for the Electronic Simulations of Thousand of Atoms) program package.<sup>[1-3]</sup>In this calculation, the double zeta basis set plus polarization (DZP) function was used for all elements. The exchange and correlation potential was used in the generalized gradient approximation (GGA) in the scheme of Perdew, Burke and Ernzerrof (PBE).<sup>[4]</sup>All the geometry structure was relaxed until energy and force are converged to  $10^{-4}$  eV and 0.02 eV/ Å. A cutoff of 250 Ry was used for the real-space integration grid. Brillouin zone was sampled by 2×2×4 k-points grid for optimized and a more refined 4×4×6 k-points grid for energy. In this calculation, supercells which is combined by double unit cell was composed 304 atoms and the lattice constant  $(a_0)$  was 17.766. And we artificially set six Co atoms spin up and six Co atoms spin down as mentioned in the article. The calculation of frontier molecular orbital was also finished in SIESTA program. To investigate the behavior of CO<sub>2</sub> absorption on the MOFs, the absorption energy  $(E_{ads})$  was put forward and defined as  $E_{ads} = E_{total} - (E_{MOFs} + E_{CO_2})$  where  $E_{total}$  was the total energy of adsorbate (i.e. CO2) on MOFs, and  $E_{MOFs}$  and  $E_{CO_2}$  were the total energy of MOFs and adsorbate, respectively. In this condition, the more negative value of  $E_{ads}$  stood for more stable adsorption.

In the reduction process, two electrons are required to convert  $CO_2$  to CO, therefore, photochemical quantum yield ( $\Phi$ ) can be calculated using the following equations.

$$\Phi_{\rm CO}(\%) = \frac{2 \text{ mol of CO yield}}{\text{moles of photon absorbed by catalyst}} X 100\%$$

The photon energy at a certain wavelength can be calculated using the following equation, where *h* is the Planck constant, *c* indicates speed of light, and  $\lambda$  is the wavelength. The average photon energy thus can be estimated.

$$E_{photon} = \frac{h c}{\lambda}$$

The following constants were used for calculation of  $\Phi_{CO}$ :

The wavelength of light: 420 nm

Light intensity: 5.78 mW/cm<sup>2</sup>

Irradiation area: 3 cm<sup>2</sup>

Average photon energy:  $4.735 \times 10^{-19}$  J

Yield of CO in 3 hours under the irradiation of  $\lambda = 420$  nm: 2.49  $\mu$ mol

Based on equations,  $\Phi_{CO}$  was calculated as 0.758 %.



Fig. S1 The coordination environment of 4,4'-bpy. All hydrogen atoms have been omitted for clarity. Magenta = Co; gray = C; red = O; blue = N.



Fig. S2 The coordination environment of NTB. All hydrogen atoms have been omitted for clarity. Magenta = Co; gray = C; red = O; blue = N.



Fig. S3 The representation of the 3D packing framework. All hydrogen atoms have been omitted for clarity. Magenta = Co; gray = C; red = O; blue = N.



**Fig. S4** (a) and (b) The square and diamond metal–organic nanotubes along the b (a) axic and c axic in the Co<sub>6</sub>-MOF. All hydrogen atoms have been omitted for clarity. Magenta = Co; gray = C; red = O; blue = N.



**Fig. S5** Ball-and-stick representations of the 3D structure of  $Co_6$ -MOF. The layer is formed by  $Co_6(\mu_3\text{-}OH)_6$  clusters and NTB. All hydrogen atoms have been omitted for clarity. Magenta = Co; gray = C; red = O; blue = N.



**Fig. S6** X-Ray powder diffraction patterns of simulated  $Co_6$ -MOF (black), as-synthesized (red), activated (blue), samples placed in hydrochloric acid solution (pH = 2) ( purple), samples placed in sodium hydroxide solution (pH = 12) (magenta).



Fig. S7 TG curves of Co<sub>6</sub>-MOF and desolvated Co<sub>6</sub>-MOF.



Fig. S8 The FT-IR curves for Co<sub>6</sub>-MOF (black), 4,4'-bpy (blue), NTB (red).





Fig. S10 The UV/Vis curves for  $Co_6$ -MOF.



Fig. S11 X-Ray powder diffraction patterns of simulated  $Co_6$ -MOF (black), as-synthesized (red), after photocatalytic reaction in 3 h (purple).



Fig. S12 Gas chromatogram and mass spectra (m/z = 29) analyses of the carbon source of the generated CO in the photocatalytic reaction of  ${}^{13}CO_2$  by Co<sub>6</sub>-MOF as a cocatalyst.



Fig. S13 The catalytic effect of  $Co_3O_4$ -Uio-66 as co-catalyst on the  $CO_2$  photoreduction system.



Fig. S14 HOMO and LOMO energy gaps of  $Co_6$ -MOF.



Fig. S15 Calculated band struture and Calculated density of states of Co<sub>6</sub>-MOF.

|                                        | Condition      |                      |         |          |                |      |                     |
|----------------------------------------|----------------|----------------------|---------|----------|----------------|------|---------------------|
| MOFs                                   | Quantity[µmol] | Light[nm]            | Time[h] | CO[µmol] | $H_2[\mu mol]$ | TON  | Reference           |
| Co <sub>6</sub> -MOF                   | 5              | $\lambda \ge 420$    | 3       | 39.36    | 28.13          | 13.5 | This work           |
| Co-MOF-74                              | 0.8            | $\lambda\!\geq\!420$ | 0.5     | 11.7     | 7.3            | 23.8 | Ref. 1 <sup>a</sup> |
| Mn-MOF-74                              | 0.8            | $\lambda\!\geq\!420$ | 0.5     | 1.5      | 2.9            | 5.5  | Ref. 1 <sup>a</sup> |
| Zn-ZIF-8                               | 0.8            | $\lambda\!\geq\!420$ | 0.5     | 2.1      | 2.4            | 5.5  | Ref. 1 <sup>a</sup> |
| Zr-UiO-66-NH <sub>2</sub>              | 0.8            | $\lambda\!\geq\!420$ | 0.5     | 1.2      | 2.2            | 4.3  | Ref. 1 <sup>a</sup> |
| $C_{10}H_{10}Co$                       | 0.8            | $\lambda\!\geq\!420$ | 0.5     | 5.0      | 2.7            | 9.6  | Ref. 1 <sup>a</sup> |
| Co-ZIF-9                               | 4              | $\lambda > 420$      | 2       | 20.8     | 3.3            | 6.0  | Ref. 2 <sup>b</sup> |
| Zr <sub>6</sub> (µ-O) <sub>4</sub> (µ- |                |                      |         |          |                |      |                     |
| OH)4(bpdc)5.83(                        | 1              | λ=300                | 6       | 5.0      | 0.5            | 5.5  | Ref. 3 <sup>c</sup> |
| Re(CO) <sub>3</sub> (dcbpy             |                |                      |         |          |                |      |                     |
| )Cl) <sub>0.17</sub>                   |                |                      |         |          |                |      |                     |

Table S1 Reported MOF materials for converting CO<sub>2</sub> to CO under visible light irradiation.

a) Ref. 1: S. B. Wang, W. S. Yao, J. L. Lin, Z. X. Ding and X. C. Wang, Angew. Chem. Int. Ed., 2014, 53, 1034. b) Ref. 2: S. B. Wang, J. L. Lin and X. C. Wang, Phys. Chem. Chem. Phys., 2014, 16, 14656. c) Ref. 3: C. Wang, Z. G. Xie, K. E. deKrafft, and W. B.

m ), Ū

| Chemical formula                                                                                                                                      | $C_{41}H_{38}Co_3N_5O_{10}$ |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|
| Formula weight                                                                                                                                        | 937.55                      |  |  |  |
| Crystal system                                                                                                                                        | Hexagonal                   |  |  |  |
| Space group                                                                                                                                           | P6 <sub>3</sub> /mcm        |  |  |  |
| a (Å)                                                                                                                                                 | 17.7662(12)                 |  |  |  |
| b (Å)                                                                                                                                                 | 17.7662(12)                 |  |  |  |
| c (Å)                                                                                                                                                 | 26.7970(2)                  |  |  |  |
| α (°)                                                                                                                                                 | 90.00                       |  |  |  |
| β (°)                                                                                                                                                 | 90.00                       |  |  |  |
| $\gamma(^{\circ})$                                                                                                                                    | 120.00                      |  |  |  |
| $V(Å^3)$                                                                                                                                              | 7324.9(11)                  |  |  |  |
| Z                                                                                                                                                     | 4                           |  |  |  |
| Temperature (K)                                                                                                                                       | 296                         |  |  |  |
| $D_{\text{calcd}}$ [g/cm <sup>3</sup> ]                                                                                                               | 0.850                       |  |  |  |
| F(000)                                                                                                                                                | 1920                        |  |  |  |
| Reflections collected                                                                                                                                 | 39887                       |  |  |  |
| <i>R</i> (int)                                                                                                                                        | 0.1187                      |  |  |  |
| Goodness-of-fit on F <sup>2</sup>                                                                                                                     | 1.078                       |  |  |  |
| $R_1$ [I>2 $\sigma$ (I)] <sup>a</sup>                                                                                                                 | 0.0669                      |  |  |  |
| $wR_2[I>2\sigma(I)]^b$                                                                                                                                | 0.1847                      |  |  |  |
| $R_1^a$ (all data)                                                                                                                                    | 0.0920                      |  |  |  |
| $wR_2^b$ (all data)                                                                                                                                   | 0.2094                      |  |  |  |
| ${}^{a}R_{1} = \Sigma   F_{o}  -  F_{c}   / \Sigma  F_{o} , \ {}^{b}wR2 =  \Sigma w( F_{o} ^{2} -  F_{c} ^{2})^{2} / \Sigma  w(F_{o}^{2})^{2} ^{1/2}$ |                             |  |  |  |

Table S2 Crystal data and structure refinements for  $Co_6$ -MOF.

| Co6-MOF                               |           |                                          |           |  |  |  |  |
|---------------------------------------|-----------|------------------------------------------|-----------|--|--|--|--|
| $Co_1-O_1$                            | 2.056(3)  | $Co_1 - O_1^3$                           | 2.056(3)  |  |  |  |  |
| $Co_1-O_2$                            | 2.072(12) | $Co_1 - O_2^1$                           | 2.072(12) |  |  |  |  |
| $\mathrm{Co}_1\text{-}\mathrm{O}_2^2$ | 2.156(3)  | Co <sub>1</sub> -N <sub>2</sub>          | 2.136(6)  |  |  |  |  |
| $O_1 - Co_1 - O_1^3$                  | 86.60(2)  | $O_1$ - $Co_1$ - $O_2$                   | 89.81(15) |  |  |  |  |
| $O_1^3$ - $Co_1$ - $O_2$              | 174.6(14) | $O_1$ - $Co_1$ - $O_2^1$                 | 174.6(14) |  |  |  |  |
| $O_1^3$ - $Co_1$ - $O_2^1$            | 89.81(15) | $O_2$ - $Co_1$ - $O_2^1$                 | 93.50(2)  |  |  |  |  |
| $O_1$ - $Co_1$ - $N_2$                | 89.03(15) | $O_1^3$ -Co <sub>1</sub> -N <sub>2</sub> | 89.03(15) |  |  |  |  |
| $O_2$ - $Co_1$ - $N_2$                | 94.91(15) | $O_2^1$ - $Co_1$ - $N_2$                 | 94.91(15) |  |  |  |  |
| $O_1 - Co_1 - O_2^2$                  | 96.50(12) | $O_1^3 - Co_1 - O_2^2$                   | 96.49(12) |  |  |  |  |
| $O_2$ - $Co_1$ - $O_2^2$              | 79.94(14) | $O_2^1$ - $Co_1$ - $O_2^2$               | 79.94(14) |  |  |  |  |
| $N_2$ - $Co_1$ - $O_2^2$              | 172.4(2)  |                                          |           |  |  |  |  |

Table S3 Selected Bonds Lengths (Å) and Angles (°) for  $Co_6$ -MOF.

## References

- P. Ordejo'n, E. Artacho, J. Soler, *Phys. Rev. B: Condens. Matter Mater. Phys.* 1996, 53, R10441;
- [2] D. Sa'nchez-Portal, P. Ordejo'n, E. Artacho, J. M. Soler, Int. J. Quantum Chem.
  1997, 65, 453;
- [3] J. M. Soler, E. Artacho, J. D. Gale, A. Garcı'a, J. Junquera, P. Ordejo'n, D. Sa'nchez-Portal, J. Phys. Condens. Matter 2002, 14, 2745.
- [4] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.