Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Nanosized core-shell structured graphene-MnO₂ nanosheet arrays as stable electrodes for superior supercapacitors

He Nan Jia[†], Jing Huang Lin[†], Yu Lin Liu, Shu Lin Chen, Yi Fei Cai, Jun Lei Qi^{*}, Ji

Cai Feng and Wei-Dong Fei*

State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China

*Corresponding authors: Tel. /fax: 86-451-86418146;

[†]These authors contributed equally.

E-mail: jlqi@hit.edu.cn (J L Qi)

Calculations. The specific capacitance was calculated from CV curves the following equation by integrating discharge current *I* [1, 2],

$$C = \int IdV/2vm(orA)V_{,}$$

where *m* is the weight of active materials (g), A is the area of the G@MnO₂ electrode (cm²), *v* is the scan rate (mV s⁻¹), and *V* is the sweep potential range of the CV curves (1 V). The power density (*P*, KW Kg⁻¹) and energy density (*E*, W h Kg⁻¹) were calculated from GCD curves [3],

$$E = \frac{0.5CV^2}{3.6}$$

$$P = \frac{3600E}{t}$$

where C is capacitance (F g⁻¹), V is the sweep potential range (1V), t is the discharge

time (s)

Figure S1. Survey XPS spectrum of $MnO_2\ NAs$ and G-MnO_2 NAs

Figure S2. a) SEM image and b) TEM image of pristine MnO_2 nanosheets after argon plasma etching.

Figure S3. CV curves of MnO₂ NAs at different scan rates.

Figure S4. The areal specific capacitance for G-MnO $_2$ NAs and MnO $_2$ NAs as a

function of the scan rate.

Figure S5. (a) TEM image of pristine G-MnO₂ NAs; (b) TEM image of G-MnO₂ NAs dissolved in 3M hydrochloric acid; (c) CV curves of porous graphene.

We dissolved the MnO₂ in G-MnO₂ NAs in 3M hydrochloric acid for 12 hours, then collected residuum (porous few-layer graphene) and dried it in a vacuum oven at 80 °C for 12 hours. As shown in Figure S5a, few-layer graphene shells in G-MnO₂ NAs act as a role of framework and encapsulate core MnO₂ nanoparticles. As shown in Figure S5b, few-layer graphene shells still maintain the shell structures well after corrosion. Furthermore, in the close observation of red cycles in Figure S5b, the disappearance of core materials (a-MnO₂ nanoparticles) suggests that few-layer graphene shells do not fully encapsulate nanoparticles. Next, the electrodes were prepared by homogeneously mixing these porous few-layer graphene (80 wt.%) and acetylene black (10 wt.%, Aladdin Chemistry) with polyvinylidene fluoride (10 wt.%) binder in N-methyl pyrrolidinone solvent. The slurry was then smeared onto a piece of nickel foam as current collector and dried in vacuum at 80°C for 12 h. The CV curves of porous graphene are shown in Figure S5c. It can be seen that the inferior area under the CV curve of porous few-layer graphene indicates that its capacitance (263 F g⁻¹ at scan rate of 2 mV s⁻¹) is extremely lower than that of the G-MnO₂ NAs (1176 F g⁻¹ at scan rate of 2 mV s⁻¹). As a result, it clear suggests that the contribution of MnO₂ nanoparticles which act as core materials is greater than few-layer graphene shells during electrochemical process.

Figure S6. (a) TEM image of 30min@G-MnO₂ dissolved in 3M hydrochloric acid; (b)
CV curves of 30min@G-MnO₂ at different scan rates; (c) Areal specific capacitance of MnO₂ with different deposition time (2 mV s⁻¹).

To further confirm the effect of few-layer graphene shells in G-MnO₂, we prolong the PECVD process to 30 min (30min@G-MnO₂) to fully encapsulate nanoparticles with few-layer graphene and supplement the CV curves for the obtained 30min@G-MnO₂. Figure S6a shows the TEM image of 30min@G-MnO₂, which was dissolved in 3M hydrochloric acid for 12 hours. Compared with Figure S5a and 5b, it remains some integrated core-shell structures, and the existence of MnO₂ nanoparticles illustrates the protective effect of fully-encapsulated few-layer graphene shells. And it also illustrates that prolonging deposition time can increase the content of few-layer graphene shells to fully encapsulate MnO₂ nanoparticles.

For further explaining the contribution of few-layer graphene, 30min@G-MnO₂ was directly used as the working electrode and the CV curve is shown in Figure S6b. However, the protective effect of few-layer graphene generates that it is hard to corrode MnO₂ nanoparticles, therefore the gravimetric specific capacitance which based on the weight of active materials is inaccurate to evaluate the role of graphene in 30min@G-MnO₂ during electrochemical measurement [4]. Thus, we select areal specific capacitance to better reflect the electrochemical contribution of graphene in G-MnO₂ NAs. And the results show that areal specific capacitance of $30 \text{min}@G-MnO_2$ is 0.51 F cm⁻² at 2 mV s⁻¹ and 1.53 F cm⁻² of G-MnO₂ NAs (as shown in Figure S6c), which means that long-time PECVD deposition or fully-encapsulate MnO₂ nanoparticles with few-layer graphene would access to a downward trend of areal specific capacitance of G-MnO₂ NAs. Obviously, encapsulating superabundant few-layer graphene on MnO₂ nanoparticles has a negative effect on electrode performance G-MnO₂ NAs, mainly because of the sacrifice of contact area between MnO₂ and electrolyte [5, 6]. This also illustrates that few-layer graphene shells in G-MnO₂ NAs are conducive to conductivity and skeleton stability instead of improving areal specific capacitance [7], and nanoparticles afford the utilization of the pseudocapacity of MnO₂.

	5			
electrode materials	electrolyte	specific capacitance	capacitance retention	reference
α-MnO ₂ Nanowires@Ultrathin δ-MnO ₂ Nanosheets	6 M KOH	$310.2 \text{ F} \cdot \text{g}^{-1}$ at $1 \text{A} \cdot \text{g}^{-1}$	98.1% after 10 000 cycles	8
Fe-doped MnO ₂ nanostructures	1 M Na ₂ SO ₄	283.4 $F \cdot g^{-1}$ at 1 $A \cdot g^{-1}$	100% after 2000 cycles	9
MnO ₂ hollow spheres/reduced graphene oxide	1 M Na ₂ SO ₄	$471.5 \text{ F} \cdot \text{g}^{-1} \text{ at}$ 0.8 A $\cdot \text{g}^{-1}$	92% after 1000 cycles	10
Ni/MnO ₂ -filter paper (FP)	1 M Na ₂ SO4	$\frac{1160 \text{ mF} \cdot \text{cm}^{-2}}{\text{at 5 mV} \cdot \text{s}^{-1}}$	85.1% after 1000 cycles	11
Metal-free SWNT/carbon/MnO ₂ hybrid electrodes	0.5 M Na2SO4	550 μ F·cm ⁻² at 20 mV·s ⁻¹	92.4% after 5000 cycles	12
MnO ₂ Nanosheet/ Carbon Fiber	1 M Na ₂ SO4	634.5 F \cdot g ⁻¹ at 10mV s ⁻¹	~100% after 3000 cycles	13
MnO ₂ -RGO _{SILAR}	1 M Na2SO4	987.5 F·g ⁻¹ at 2 A·g ⁻¹	~79% after 10000 cycles	14
α -MnO ₂ nanowires@ Ni _{1-x} Mn _x O _y nanoflakes	0.5 M Na2SO4	657 F·g ⁻¹ at 0.25 A·g ⁻¹	94.6% after 1000 cycles	15
Co ₂ AlO ₄ @MnO ₂ nanosheets	2 M KOH	915.1 F·g ⁻¹ at 2 A·g ⁻¹	96.1% after 3000 cycles	16
rGO/MnOx	[C ₂ MIm]BF ₄ electrolyte	$202 \text{ F} \cdot \text{g}^{-1} \text{ at } 1$ $\text{mV} \cdot \text{s}^{-1}$	106% after 115000 cycles,	17
three-dimensional mesoporous MnO ₂ nanostructures	1 M Na ₂ SO ₄	322 $F \cdot g^{-1}$ at 1 A $\cdot g^{-1}$	90% after 8000 cycles	18
a vertically aligned Ni nanowire array- MnO ₂	0.5 M Na ₂ SO ₄	$\begin{array}{c} 214 \ F \cdot g^{-1} \ at \ 1 \\ mV \cdot s^{-1} \end{array}$	103.7% after 20000 cycles	19
CuO@MnO ₂ core–shell nanostructures	1 M Na ₂ SO ₄	343.9 $F \cdot g^{-1}$ at 0.25 $A \cdot g^{-1}$	83.1% after 12 000 cycles	20
NiCo ₂ O4@MnO ₂ nanosheet networks	1M KOH	913.6 F·g ⁻¹ at 0.5A/g	87.1% after 3000 cycles	21
MnO ₂ nanoflake@CNTs/Ni	1 M Na ₂ SO ₄	1072 F \cdot g ⁻¹ at 1 A \cdot g ⁻¹		22
CE@DDw@MnO.	<u>1 M Na-SO.</u>	$600.0 \text{ F} \cdot \text{g}^{-1}$ at	92% after	

Table. S1. The specific capacitance and cycling stability of various MnO₂-based electrodes in the three-electrode system in references.

		1 A·g ⁻¹	5000cycles	
MnO ₂ -MnO ₂ /nanographene/MECN	1 M Na ₂ SO ₄	894 $F \cdot g^{-1}$ at 1 mA·cm ⁻²	83% after	
			20 000	24
			cycles	
δ phase MnO ₂ on Ga-doped ZnO (GZO)	1 M Na ₂ SO ₄	1068 F·g ⁻¹ at 0.1 mA·cm ⁻²	76.8% after	
			13,000	25
			cycles	
Graphene-MnO ₂	1 M Na ₂ SO ₄	216 $F \cdot g^{-1}at$	90% after	26
		0.5 A·g ⁻¹	5000 cycles	
Carbon Nanotube/MnO ₂	1 M Na ₂ SO ₄	300 $F \cdot g^{-1}$ at	75% after	27
		0.1 A·g ⁻¹	1600 cycles	
G-MnO ₂ NAs	1M Na ₂ SO ₄	1176 F·g ⁻¹ at 2 mV·s ⁻¹	98.1% after	
			10000	This work
			cycles	

Reference:

[1] E. Eustache, C. Douard, R. Retoux, C. Lethien and T. Brousse, Adv. Energy Mater., 2015, 5,18.

[2] Y. Huang, Y. Li, Z. Hu, G. Wei, J. Guo and J. Liu, J. Mater. Chem. A, 2013, 1, 9809.

[3] Z. Li, Y. An, Z. Hu, N. An and Y. Zhang, J. Mater. Chem. A, 2016, 4, 10618.

[4] Z. Zhang, F. Xiao, L. Qian, J. Xiao, S. Wang and Y. Liu, *Adv. Energy Mater.*, 2014, 4. 1400064.

[5] R. Miller, R. A. Outlaw and B. C. Holloway, Science, 2010, 329, 1637–1639.

[6] G. Hahm, R. A. M. Reddy, D. P. Cole, M. Rivera, J. A. Vento, J. Nam, H. Y. Jung,

Y. L. Kim, N. T. Narayanan, D. P. Hashim, C. Galande, Y. J. Jung, M. Bundy, S.

Karna, P. M. Ajayan and R. Vajtai, Nano Lett., 2012, 12, 5616–5621.

[7] M. F. El-Kady, M. Ihns, M. Li, J. Y. Hwang, M. F. Mousavi, L. Chaney, A. T.

Lech and R. B. Kaner, *Proceedings of the National Academy of Sciences*, 2015, **112**, 4233-4238.

[8] Z. Ma, G. Shao, Y. Fan, G. Wang, J. Song and D. Shen, ACS Appl. Mater. Inter., 2016, 8, 9050-9058.

[9] Z. Wang, F. Wang, Y. Li, J. Hu, Y. Lu and M. Xu, Nanoscale, 2016, 8, 7309-7317.

[10] M. Lin, B. Chen, X. Wu, J. Qian, L. Fei, W. Lu, L. W. Chan and J. Yuan, *Nanoscale*, 2016, **8**, 1854-1860.

[11] L. Zhang, P. Zhu, F. Zhou, W. Zeng, H. Su, G. Li, J. Gao, R. Sun and C. Wong, ACS Nano, 2016, 10, 1273-1282.

[12] L. Sun, X. Wang, K. Zhang, J. Zou and Q. Zhang, *Nano Energy*, 2016, 22, 11-18.
[13] N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Tang and M. Zhu, *Adv. Energy Mater.*, 2016, 6, 1501458.

[14] M. Jana, S. Saha, P. Samanta, N. C. Murmu, N. H. Kim, T. Kuila and J. H. Lee, J. Power Sources, 2017, 340, 380-392.

[15] H. Y. Wang, F. X. Xiao, L. Yu, B. Liu and X. W. D. Lou, *Small*, 2014, 10, 3181-3186.

[16] F. Li, H. Chen, X. Y. Liu, S. J. Zhu, J. Q. Jia, C. H. Xu, F. Dong, Z. Q. Wen and Y. X. Zhang, J. Mater. Chem. A, 2016, 4, 2096-2104.

[17] Y. Wang, W. Lai, N. Wang, Z. Jiang, X. Wang, P. Zou, Z. Lin, H. J. Fan, F.

Kang, C. Wong and C. Yang, Energy Environ. Sci., 2017, DOI: 10.1039/c6ee03773a.

[18] S. Bag and C. R. Raj, J. Mater. Chem. A, 2016, 4, 587-595.

[19] C. Xu, Z. Li, C. Yang, P. Zou, B. Xie, Z. Lin, Z. Zhang, B. Li, F. Kang and C. P. Wong, *Adv. Mater.*, 2016, 28, 4105.

[20] H. Chen, M. Zhou, T. Wang, F. Li and Y. X. Zhang, J. Mater. Chem. A, 2016, 4, 10786-10793.

[21] Y. Zhang, B. Wang, F. Liu, J. Cheng, X. W. Zhang and L. Zhang, *Nano Energy*, 2016, 27, 627-637.

[22] P. Sun, H. Yi, T. Peng, Y. Jing, R. Wang, H. Wang and X. Wang, J. Power Sources, 2017, 341, 27-35.

- [23] T. Qin, B. Liu, Y. Wen, Z. Wang, X. Jiang, Z. Wan, S. Peng, G. Cao and D. He, J. Mater. Chem. A, 2016, 4, 9196-9203.
- [24] D. Wu, S. Xu, C. Zhang, Y. Zhu, D. Xiong, R. Huang, R. Qi, L. Wang and P. K. Chu, J. Mater. Chem. A, 2016, 4, 11317-11329.
- [25] L. Yang, S. Cheng, J. Wang, X. Ji, Y. Jiang, M. Yao, P. Wu, M. Wang, J. Zhou and M. Liu, *Nano Energy*, 2016, **30**, 293-302.
- [26] L. Sheng, L. Jiang, T. Wei and Z. Fan, Small, 2016, 12, 5217-5227.
- [27] H. Chen, S. Zeng, M. Chen, Y. Zhang, L. Zheng and Q. Li, Small, 2016, 12, 2035-2045.