Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

A Novel Architecture of Dandelion-like Mo₂C/TiO₂ Heterojunction Photocatalysts: Towards High-Performance Photocatalytic Hydrogen Production from Water Splitting

Xinzheng Yue,^a Shasha Yi,^b Runwei Wang,^a Zongtao Zhang*,^a and Shilun Qiu^a

^aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.

^bKey Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, China.

*Corresponding author: Zongtao Zhang

Tel: +86-431-85168115

Fax: +86-431-85168115

E-mail address: zzhang@jlu.edu.cn

Fig. s and Tables

Fig. S1 TEM images of pure TiO₂ of low-resolution (A,B) and high-resolution (C,D).

Fig. S2 SEM images of pure Mo₂C.

Fig. S3 A) TEM, and B) HRTEM images of pure Mo₂C.

AN	Series	unn. C	norm. C	Atom. C	1 Sigma
		(wt.%)	(wt.%)	(at.%)	(wt.%)
6	K-series	42.84	31.22	45.93	5.45
8	K-series	53.57	39.04	43.12	7.20
22	K-series	40.64	29.62	10.93	1.16
42	L-series	0.18	0.13	0.02	0.04
13	K-series	0.00	0.00	0.00	0.00
	AN 6 8 22 42 13	ANSeries6K-series8K-series22K-series42L-series13K-series	AN Series unn. C (wt.%) 6 K-series 42.84 8 K-series 53.57 22 K-series 40.64 42 L-series 0.18 13 K-series 0.00	AN Series unn. C norm. C (wt.%) (wt.%) (wt.%) 6 K-series 42.84 31.22 8 K-series 53.57 39.04 22 K-series 40.64 29.62 42 L-series 0.18 0.13 13 K-series 0.00 0.00	AN Series unn. C norm. C Atom. C (wt.%) (wt.%) (wt.%) (at.%) 6 K-series 42.84 31.22 45.93 8 K-series 53.57 39.04 43.12 22 K-series 40.64 29.62 10.93 42 L-series 0.18 0.13 0.02 13 K-series 0.00 0.00 0.00

Fig. S4 EDX analysis of 1 wt% Mo_2C/TiO_2 sample.

Fig. S5 (A) BET adsorption-desorption isotherms, and (B) BJH pore size distribution of the bare TiO_2 and 1 wt% Mo_2C/TiO_2 samples.

Nitrogen adsorption-desorption isotherms were performed to investigate the Brunauer-Emmett-Teller (BET) surface areas and porous structures of TiO₂ and 1 wt% Mo_2C/TiO_2 . As shown in Fig. S5, the isotherms of the two present samples exhibit H3-type hysteresis behavior according to the classification of IUPAC, indicating the presence of mesopores and macropores.^{S1} The specific surface areas of TiO₂ and 1 wt% Mo_2C/TiO_2 are 104.0 and 105.6 m² g⁻¹, suggesting that Mo_2C 's loading is not improve the surface area of TiO₂.

Fig. S6 XRD patterns of Mo₂C/TiO₂ hybrid with varying Mo₂C contents: (a) 0.25 wt%, (b) 0.5 wt%,
(c) 1 wt%, (d) 2 wt%, and (e) 4 wt%.

Fig. S7 XPS spectrum of C 1s for pure Mo₂C sample.

Fig. S8 Photocatalytic H_2 production measured for 1 wt% Mo_2C/TiO_2 under monochromatic light of 365 nm in 10 vol% triethanolamine aqueous solution.

Fig. S9 XRD patterns of 1 wt% Mo₂C/TiO₂ before and after the recycling experiments.

Fig. S10 The high-resolution XPS profiles of 1 wt% Mo₂C/TiO₂ after the recycling experiments for A) Ti 2p, B) O 1s, C) Mo 3d, and D) C 1s, respectively.

Fig. S11 OCP as a function of time under simulated solar light irradiation.

The open circuit photovoltage (OCP) decay curves were recorded under simulated solar light irradiation with on-off switches, as shown in Fig. S11. Generally, OCP decay kinetics reflects the surface charge recombination in the electrode, because bulk recombination usually occurs in the scale of nanosecond/microsecond.⁵¹

Fig. S12 M-S plots for A) TiO_2 , and B) Mo_2C in 0.5 M Na_2SO_4 solution (PH = 7).

Table S1. The band gap energy, energy levels of calculated conduction band edge and valence bandedges for Mo_2C and TiO_2 .

Semiconductors	Band gap energy E _g /eV	Conduction band edge (V vs. NHE)	Valence band edge (V vs. NHE)
Mo ₂ C	1.10	-0.30	0.80
TiO ₂	3.27	-0.36	2.91

Table S2. Comparison of photocatalytic hydrogen production performances for Mo_2C/TiO_2 system with other promising photocatalysts.

Photocatalyst	Light source	H ₂ (µmol h ⁻¹ g ⁻¹)	Ref.
FeP/TiO ₂	200 W Hg	1900	ACS Nano 2014, 8,1110121
Cu/TiO ₂	UV-LED (365 nm)	5104	Nano Lett. 2015, 15 , 4853 ⁸²
MoS ₂ /RGO/TiO ₂	350 W Xe	2066	J. Am. Chem. Soc. 2012, 134 , 6575 ^{S3}
GO/TiO ₂	300 W Hg	1930	ChemSusChem 2014, 7, 618 ^{S4}
Cu(OH) ₂ /TiO ₂	UV-LED (365 nm)	3418	Energy Environ. Sci., 2011, 4, 1364 ⁸⁵
Prorous TiO ₂	300 W Xe	23740	J. Mater. Chem. A, 2015, 3 , 3710 ^{S6}
Ni(OH) ₂ /TiO ₂	UV-LED (365 nm)	3056	J. Phys. Chem. C 2011, 115, 4953 ⁸⁷
$Au/B-TiO_2$	300 W Xe	2740	ACS Catal. 2014, 4, 145158
Au@TiO2/CdS	300 W Xe	1970	ACS Appl. Mater. Interfaces 2013, 5, 8088 ^{S9}
PdAu/TiO ₂	UV-LED (365 nm)	19600	ACS Nano 2014, 8,349013
PtO/TiO ₂	300 W Xe	4400	Nat. Commun. 2013, 4 , 2500 ^{S10}
CNT/TiO ₂	200 W Hg	2940	Appl. Catal. B Environ. 2015, 179, 574811
MoS_2/TiO_2	300 W Xe	1600	Small 2013, 9 ,140 ¹¹
Au/TiO ₂	300 W Xe	6900	Nat. Chem. 2011, 3 , 489 ¹²
Mo ₂ C/TiO ₂	300 W Xe	39400	This work

References for SI

- (S1) N M. Kruk and M. Jaroniec, Chem. Mater., 2001, 13, 3169-3183.
- (S2) Xiao. S., Liu. P., Zhu. W., Li. G., Zhang. D., Li. H., Nano Lett., 2015, 15, 4853-4858.

- (S3) Xiang. Q., Yu. J. and Jaroniec. M., J. Am. Chem. Soc., 2012, 134, 6575-6578.
- (S4) Liu. L., Liu. Z., Liu. A., Gu. X., Ge. C., Gao. F. and Dong. L., ChemSusChem, 2014, 7, 618-626.
- (S5) Yu. J. and Ran., J., Energy Environ. Sci., 2011, 4, 1364-1371.
- (S6) Wang, L.; Nie, Z.; Cao, C.; Ji, M.; Zhou, L.; Feng, X., J. Mater. Chem. A 2015, 3, 3710-3718.
- (S7) Yu. J., Hai. Y. and Cheng. B., J. Phys. Chem. C, 2011, 115, 4953-4958.
- (S8) Wang. F., Jiang. Y., Gautam. A., Li. Y. and Amal. R., ACS Catal., 2014, 4, 1451-1457.
- (S9) Fang. J., Xu. L., Zhang. Z., Yuan. Y., Cao. S., Wang. Z., Yin. L., Liao. Y. and Xue. C., ACS Appl. Mater. Interfaces, 2013, 5, 8088-8092.
- (S10) Li, Y. H.; Xing, J.; Chen, Z. J.; Li, Z.; Tian, F.; Zheng, L. R.; Wang, H. F.; Hu,
 P.; Zhao, H. J.; Yang, H. G., *Nat. Commun.* 2013, *4*, 2500-2506.
- (S11) Moya. A., Cherevan. A., Marchesan. S., Gebhardt. P., Prato. M., Eder. D. and Vilatela. J., *Appl. Catal. B: Environ.*, 2015, **179**, 574-582.
- (S12) Zhou, W.; Yin, Z.; Du, Y.; Huang, X.; Zeng, Z.; Fan, Z.; Liu, H.; Wang, J.; Zhang, H.,. Small **2013**, *9*, 140-147.
- (S13) Murdoch, M.; Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca, J.; Idriss, H., *Nat. Chem.* 2011, *3*, 489-492.