Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Hierarchically Tubular Nitrogen-doped Carbon Structures for Oxygen

Reduction Reaction

Wei Wei,^{a,†} Hongtao Ge,^{a,†} Linsong Huang,^a Min Kuang,^a Abdullah M. Al-Enizi,^b Lijuan Zhang^a and Gengfeng Zheng^{a,*}

^aLaboratory of Advanced Materials, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
^bDepartment of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
*E-mail: gfzheng@fudan.edu.cn

Figure S1. (a, b) TEM images of Cu₂O-HT-NCTs.

Figure S2. SEM images of (a) SiO₂ nanospheres, (b) SiO₂-CNs and (c) Si-CNs.

Figure S3. N₂ adsorption-desorption curves of (a) the HT-NCTs and (b) Si-CNs.

Figure S4. (a) XPS spectrum of HT-NCTs. (b) Different atomic proportion of HT-NCTs.

Figure S5. High-resolution XPS spectra of N 1s in Si-CNs.

Figure S6. K–L plots of HT-NCTs at the potential of 0.3, 0.4 and 0.5 V.

Figure S7. (a, b) TEM images of HT-NCTs after stability tests.

	Pyridinic N	Pyrrolic N	Graphitic N	Oxygenated N	Total
Relative	26.72%	15.23%	42.64%	15.41%	100%
content					
Total	2.34 at%	1.33 at%	3.73 at%	1.35 at%	8.03 at%
content					

Table S1. Proportions of Different Kinds of Nitrogen in HT-NCTs

Table S2. Proportions of Different Kinds of Nitrogen in Si-CNs

	Pyridinic N	Pyrrolic N	Graphitic N	Oxygenated N	Total
Relative	34.27%	48.77%	10.79%	6.17%	100%
content					
Total	1.81 at%	2.57 at%	0.57 at%	0.33 at%	5.28 at%
content					

Reference	Onset potential	Half-wave	Limiting current	Loading
	(V vs. RHE)	potential (V vs.	(mA cm ⁻²)	(mg cm ⁻²)
		RHE)		
<u>81</u>	0.9	0.76	5.79	0.204
82	0.9	0.79	4.1	0.102
S 3	0.86	0.77	4.8	0.498
S 4	0.83	0.72	4.5	0.396
85	0.88	0.76	3.3	0.251
This work	0.89	0.76	4.9	0.137

Table S3. Comparison of Different ORR Catalysts

References:

- S1. H. Yu, L. Shang, T. Bian, R. Shi, G. I. N. Waterhouse, Y. Zhao, C. Zhou, L.-Z. Wu, C.-H. Tung and T. Zhang, *Adv. Mater.*, 2016, **28**, 5080-5086.
- S2. X. Fu, X. Hu, Z. Yan, K. Lei, F. Li, F. Cheng and J. Chen, Chem. Commun., 2016, 52, 1725-1728.
- S3. C. Hu, Y. Zhou, R. Ma, Q. Liu and J. Wang, J. Power Sources, 2017, 345, 120-130.
- S4. G. Panomsuwan, N. Saito, T. Ishizaki, ACS Appl. Mater. Interfaces, 2016, 8, 6962-6971.
- S5. A. Mulyadi, Z. Zhang, M. Dutzer, W. Liu and Y. Deng, *Nano Energy*, 2017, **32**, 336-346.