Supporting Information

$Sb_2O_3/MXene(Ti_3C_2T_x)$ hybrid anode materials with enhanced performance for sodium-ion batteries

Xin Guo^a, Xiuqiang Xie^a, Sinho Choi^a, Yufei Zhao^a, Hao Liu^a,* Chengyin Wang^b, Song Chang^c, and Guoxiu Wang^a*

- a. Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Broadway, Sydney NSW 2007, Australia. Email: <u>hao.liu@uts.edu.au; Guoxiu.Wang@uts.edu.au</u>
- b. College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, China.
- c. Dongguan MaNair New Power Co., Ltd, McNair Industry Estate, 1888 West Meijing Road, Dongguan City, Guangdong Province 523800, China.

Figure S1 XRD patterns of Ti_3AlC_2 , delaminated $Ti_3C_2T_x$ and exfoliated MXene $Ti_3C_2T_x$.

Figure S2 XRD pattern of the intermediate product, which can be indexed as the $Sb_4O_5Cl_2$ phase according to PDF database.

Based on the XRD result, the reaction equation for the preparation of the $Sb_2O_3/Ti_3C_2T_x$ can be proposed as follows:

$$\begin{split} SbCl_{3} + H_{2}O \rightarrow Sb(OH)Cl_{2} + HCl \\ Sb(OH)Cl_{2} + H_{2}O \rightarrow Sb(OH)_{2}Cl + HCl \\ Sb(OH)_{2}Cl \rightarrow SbOCl + H_{2}O \\ 4SbOCl + H_{2}O \rightarrow Sb_{2}O_{3} \cdot 2SbOCl (Sb_{4}O_{5}Cl_{2}) + 2HCl \\ Sb_{2}O_{3} \cdot 2SbOCl + 2NaOH \rightarrow 2Sb_{2}O_{3} + 2NaCl + H_{2}O \end{split}$$

Figure S3 SEM image of Sb₂O₃ material.

Figure S4 AFM image of the exfoliated MXene $Ti_3C_2T_x$ and corresponding height profile.

Figure S5 SEM images of the Raw-Sb₂O₃/Ti₃C₂T_x composite fabricated under an immediate hydrolysis process without PVP. Typically, the same amount of NaOH solution was added into the SbCl₃ and Ti₃C₂T_x mixture in one fell swoop instead of the dropwise addition.

Figure S6 Energy dispersive spectroscopy (EDS) analysis of the Sb₂O₃/Ti₃C₂T_x composite.

Figure S7 Raman spectrum of pure Sb₂O₃ material.

Figure S8 XPS spectra in the Sb 3d and O 1s region of (a) $Ti_3C_2T_x$, (b) Sb_2O_3 and (c) $Sb_2O_3/Ti_3C_2T_x$; Ti 2p spectra of (d) $Ti_3C_2T_x$ and (e) $Sb_2O_3/Ti_3C_2T_x$; (f) comparison of the spectra of $Ti_3C_2T_x$ and $Sb_2O_3/Ti_3C_2T_x$ in the F 1s region.

Figure S9 The first 5 cycles of cyclic voltammetry curves of the (a) $Ti_3C_2T_x$ and (b) Sb_2O_3 anode at a scan rate of 0.1 mV s⁻¹.

Figure S10 (a) First charge-discharge curves of the Sb_2O_3 electrode at a current density of 50 mA g⁻¹. (b) Charge-discharge curves of the Sb_2O_3 electrodes at different current densities.

Figure S11 (a) First discharge-charge curves of Na-ion batteries with $Ti_3C_2T_x$ anode at a current density of 50 mA g⁻¹, and (b) cycling performance with $Ti_3C_2T_x$ anode at a current density of 50 mA g⁻¹.

Figure S12 Nyquist plots of the $Sb_2O_3/Ti_3C_2T_x$ and Sb_2O_3 electrodes at room temperature in high frequency region.

Figure S13 Electrochemical impedance spectra (EIS) for the batteries made of (a) the $Sb_2O_3/Ti_3C_2T_x$ and (b) Sb_2O_3 at different temperature range from 35 °C to 55 °C.

For sodium ions intercalation reaction, the apparent activation energy E_a , namely, the energy barrier between reactant and product, represents different value for different material. The E_a for the sodium intercalation and exchange current (i_0) can be calculated from the following equation.

$$i_0 = RT/(nFR_{ct}) = Aexp(-E_a/RT)$$

Where R is the gas constant, T is the absolute temperature, n is the number of transferred electrons, F is Faraday constant, and A is a temperature-independent coefficient. The EIS profiles tested at different temperatures are shown as Figure S10. The activation energies are $33.5 \text{ kJ} \text{ mol}^{-1}$ and $47.1 \text{ kJ} \text{ mol}^{-1}$ for the Sb₂O₃/Ti₃C₂T_x and Sb₂O₃, respectively, as calculated from the Arrhenius plots.

Figure S14 Ex-situ SEM images of the $Sb_2O_3/Ti_3C_2T_x$ electrodes after (a) 10 cycles and (b)

50 cycles.