Electronic Supplementary Information (ESI) for

## Fabrication of a One-dimensional Tube-in-tube Polypyrrole/Tin oxide Structure for Highly Sensitive DMMP Sensor Applications

Jaemoon Jun, Jun Seop Lee, Dong Hoon Shin, Jungkyun Oh, Wooyoung Kim, Wonjoo Na, and Jyongsik Jang \*

School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), 599 Gwanangno, Gwanak-gu, Seoul, 151-742 (Korea). Fax: +82-2-888-7295; Tel: 82-2-880-8348; e-mail: jsjang@plaza.snu.ac.kr



**Fig. S1**. (a, c) Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of the  $SnO_2$  fibers. (b, d) TEM and SEM images of the  $SnO_2$  tubes.



**Fig. S2**. Transmission electron microscopy (TEM) images of the PPy@SnO<sub>2</sub> tube in tube by conducting the VDP step at different temperature (a) $60^{\circ}$ C and (b) $100^{\circ}$ C.



Fig. S3. TEM image of the morphology of the PPY coated  $SnO_2$  tube structure after VDP method in ambient state.



Fig. S4. (a) Low-and (c) high-resolution FE-SEM images of the tube-in-tube SnO<sub>2</sub>.



Fig. S5. High-resolution SEM image of the PPy@SnO<sub>2</sub> tube in tube.



Fig. S6. X-ray photoelectron spectroscopy (XPS) analysis of a fully scanned spectra (0–1200 eV).

Fig.S6 shows the overall XPS spectroscopy of the PPy@SnO<sub>2</sub> tube in tube over the range of 0-1200eV; carbon, nitrogen, oxygen, tin, and iron atoms were present. Based on the XPS peak, it is considered that the small quantities of iron atom originated from FeCl3 solution is still exist.



**Fig. S7.** EDS dot mapping of  $PPy@SnO_2$  tube in tube surface components indicating (a)overall SEM image, (b)carbon, (c)nitrogen, (d)tin, (e)oxygen and (f)iron



Fig. S8. EDX spectrum of the PPy@SnO<sub>2</sub> tube in tube surface

Table S1. Summarized elemental distribution of the PPy@SnO2 tube in tube

| Element | Weight% | Atomic% |
|---------|---------|---------|
| СК      | 5.42    | 14.30   |
| NK      | 5.64    | 12.77   |
| ОК      | 27.71   | 54.94   |
| AI K    | 0.31    | 0.36    |
| CI K    | 1.50    | 1.35    |
| Fe K    | 2.15    | 1.22    |
| Sn L    | 51.54   | 13.77   |
| Sb L    | 3.66    | 0.95    |
| Pt M    | 2.07    | 0.34    |



Fig. S9. Nitrogen adsorption-desorption isotherm curves of (a) Fiber, (b) Tube, and (c) Tube-in-tube.



Fig. S10. (a) Low- and (b) high-resolution optical microscopy images of the interdigitated array (IDA) electrode.



Fig. S11. Current–voltage (I-V) curve of the tube-in-tube PPy@SnO<sub>2</sub> sensor electrode.



**Fig. S12**. Molecular structures of (a) dimethyl methylphosphonate (DMMP) and (b) polypyrrole (PPy). (c) Schematic diagram describing the effect of hydrogen bonding on PPy.



Fig. S13. Schematic diagram of the formation of a p-n junction.



Fig. S14. SEM image of the  $PPy@SnO_2$  nanoparticles.



Fig. S15. Real-time monitoring of  $PPy@SnO_2$  having different one-dimensional (1D) structures after sequential exposure to DMMP.



**Fig. S16**. Real-time responses of the PPy@SnO<sub>2</sub> nanoparticles upon periodic exposure to dimethyl methylphosphonate(DMMP); 0.1 ppb to 1 ppm.



Fig. S17. Changes in sensitivity as a function of DMMP concentration calculated from the real-time responses.



**Fig. S18.** Variation and comparison of the sensitivity parameter. These parameters were evaluated from 10 devices fabricated at 1 ppm