Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supporting Information (ESI) for

## Platinum and indium sulfide-modified Cu<sub>3</sub>BiS<sub>3</sub> photocathode for

## photoelectrochemical hydrogen evolution

Sunao Kamimura,<sup>1,2</sup> Naoki Beppu,<sup>1</sup> Yousuke Sasaki,<sup>1</sup> Toshiki Tsubota,<sup>1</sup> and Teruhisa Ohno<sup>1,3\*</sup>

<sup>1</sup>Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan

<sup>2</sup> PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 322-0012, Japan

<sup>3</sup> ACT-C, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 322-0012, Japan

\*Corresponding author: tohno@che.kyutech.ac.jp

< Contents >

ESI. Fig. S1 Time course data for applied voltage during electrodeposition.

ESI. Fig. S2 Current-potential curves for Pt-Cu<sub>3</sub>BiS<sub>3</sub>, Pt-CdS/Cu<sub>3</sub>BiS<sub>3</sub> and Pt-In<sub>2</sub>S<sub>3</sub>/Cu<sub>3</sub>BiS<sub>3</sub>.

 $\textbf{ESI. Fig. S3} \ Current-potential \ curves \ for \ Cu_3BiS_3, \ Pt-Cu_3BiS_3, \ In_2S_3/Cu_3BiS_3 \ and \ Pt-In_2S_3/Cu_3BiS_3.$ 

ESI. Table S1 ICP-AES analysis for aqueous electrolyte before and after photoelectrochemical reaction.



**Fig. S1** (a) Time course data for applied voltage during electrodeposition. (b) Photographs of each electrodes before and after electrodeposition. As seen in these photographs, black Cu/Bi layer was deposited over Mo/glass substrate after electrodeposition, while Pt was no notable difference in the appearances. (c) Experimental photograph during electrodeposition. (d) Enlarged photograph. The small bubble was clearly observed over Pt electrode, which attributed to the oxygen gas.



**Fig. S2**. Comparison of current-potential curves for Pt-Cu<sub>3</sub>BiS<sub>3</sub>, Pt-CdS/Cu<sub>3</sub>BiS<sub>3</sub> and Pt-In<sub>2</sub>S<sub>3</sub>/Cu<sub>3</sub>BiS<sub>3</sub> in 0.1M Na<sub>2</sub>SO<sub>4</sub> aqueous solution (pH 6) under AM1.5G simulated solar light. The CdS buffer layer was deposited over the Cu<sub>3</sub>BiS<sub>3</sub> electrode by chemical bath deposition method, which procedure has been reported in our previous work (S. Kamimura *et al.*, RSC advances, 2016, 6, 112594-112601).



**Fig. S3**. Current-potential curves for  $Cu_3BiS_3$ , Pt- $Cu_3BiS_3$ ,  $In_2S_3/Cu_3BiS_3$  and Pt- $In_2S_3/Cu_3BiS_3$  in 0.1M Na<sub>2</sub>SO<sub>4</sub> aqueous solution (pH 6) under an irradiation of AM1.5G simulated solar light.

|                     | Emission intensities of elements (a.u.) |        |      |   |
|---------------------|-----------------------------------------|--------|------|---|
|                     | Cu                                      | Bi     | In   | S |
| Before <sup>a</sup> | 0.027                                   | 0.0077 | 0.22 |   |
| After <sup>b</sup>  | 0.028                                   | 0.0063 | 0.25 |   |

**Table 1.** ICP-AES analysis for aqueous electrolyte before and after photoelectrochemical reaction.

(a) As-prepared 0.1 M Na<sub>2</sub>SO<sub>4</sub> aqueous electrolyte. (b) 0.1 M Na<sub>2</sub>SO<sub>4</sub> aqueous electrolyte after photoelectrochemical reaction by using Pt-In<sub>2</sub>S<sub>3</sub>/Cu<sub>3</sub>BiS<sub>3</sub> electrode.