Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Embedding of Mg-doped V₂O₅ nanoparticles in carbon matrix to improve their electrochemical properties for high-energy rechargeable lithium batteries

Fang Xiao^a, Xuexia Song^a, Zhaohui Li^{*a}, Honglai Zhang^a, Lingjun Zhang^a, Gangtie Lei^a, Qizhen Xiao^a, Zhongliang Hu^{*b} and Yanhuai Ding^c

^aKey Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, P.R. China

^bCollege of Metallurgy and Material Engineering, Hunan University of Technology, Hunan 412007,

P.R. China

^cCollege of Civil Engineering & Mechanics, Institute of Rheology Mechanics, Xiangtan University, Hunan 411105, P.R . China

1. Preparation of the PMAA template

At first, 0.010 g of sodium dodecyl sulfate (SDS), 1.750 g of methacrylic acid (MAA), and 0.093 g of *N*,*N*'-methylenebisacrylamide (MBA) were added to a three-necked flask that filled with 125 ml de-ionized water, and then mechanically stirred at room temperature for 1h. The flask was equipped with a nitrogen inlet, a mechanical stirrer and a Hirsch funnel, and immersed in a water bath. Subsequently, a solution of 0.140 g ammonium persulfate (APS) in 25 ml de-ionized water was added dropwise under agitation, and was bubbled with N₂ for 0.5h at room temperature. After that, the temperature of water bath was raised to 75°C and maintained for 2h to perform the cross-linked polymerization of MAA monomers. As a result, a creamy-white suspension was formed, and the pH of the suspension was adjusted to 6 by 5 M ammonium hydroxide. The filter residue was washed with 20 ml acetone three times and dried under vacuum at room temperature to get the cross-linked PMAA microspheres finally. It can be seen that the diameter of the microgel spheres ranges from 10 to 20 μ m (Fig. S1).

^{*} Corresponding author, Tel.: +86 731 58292206; fax: +86 731 58292251. E-mail address: <u>lzh69@xtu.edu.cn</u> (Z.H. Li), <u>david10103@sina.com</u>(Z.L. Hu)

Fig. S1 SEM image of the as-prepared PMAA microgel spheres (scale bar: 20 µm).

2. Thermo-gravimetric analysis of the precursor and V₂O₅@C spheres

Fig. S2a shows the TG/DTG curves of the precursor in nitrogen atmosphere over the temperature range of 50-600 °C at 10 °C min⁻¹. It can be seen that the precursor lost the absorbed water below 200 °C, and the vanadium-based compounds were decomposed to form the V_2O_5 at 258 °C. The crossing-linked PMAA macromolecules are decomposed at 346 °C. At 375 °C, the formed V_2O_5 nanoparticles might be crystallized further. Thermo-gravimetric analysis (TGA) of the obtained V_2O_5 @C composite material was performed in air (Fig. S2b). As is shown that, the weight loss was about 9% when the heating temperature was raised to 500 °C. TG curves for the doped samples are shown in Fig. S2 c, d and e. The carbon content in the composite is 9.5%, 8.8% and 9.7% for the HVC-2, HVC-3 and HVC-4 samples, respectively. Thus, the V_2O_5 contents in the HVC-1, HVC-2, HVC-3, and HVC-4 samples are calculated to 91.0%, 90.5%, 91.2%, and 90.7%, respectively.

Fig.S2 TG/DTG curves of the precursors of $V_2O_5@C$ in nitrogen atmosphere (a); TG curves of the asprepared $V_2O_5@C$ (b), $Mg_{0.05}V_2O_5@C$ (c), $Mg_{0.1}V_2O_5@C$ (d) and $Mg_{0.15}V_2O_5@C$ (e) in air.

Fig. S3 SEM images of the V_2O_5 (a) and $Mg_{0.1}V_2O_5$ (b) particles prepared without using the PMAA template.

Fig. S4 EDX pattern of the HVC-3 sample.

Fig. S5 Rietveld refinement results of the HVC examples using the standard orthorhombic structure. R_p : profile factor related to the residual error directly calculated by the Model structure of the XRD spectrum with the experimental data. R_{wp} : weight profile factor that increases the weight of a particular location based on R_p .⁶³

Fig. S6 (a) Galvanostatic charge-discharge curves of the HVC-3 sample at the current density of 1.5 A g^{-1} during different cycles. (b) Coulombic efficiencies of the HVC-3 sample at the 0.03 A g^{-1} over the 2.0-4.0 V potential range during the first 50 cycles.

Sample	Р		C _t (mAh g ⁻¹)*
HVC-1	0.91	0	401.3
HVC-2	0.905	0.046	393.9
HVC-3	0.912	0.094	390.5
HVC-4	0.907	0.144	381.6

Table S1. Theoretical capacities of the HVC samples over the potential range of 1.5-4.0 V (vs. Li^+/Li) when the carbon content and pre-inserted Mg²⁺ in the composite is taken into account.

* Theoretical capacity (C_t) can be calculated based on the following equation:

$$C_t = \frac{26800 \times (n-\alpha)}{M} \times P \quad (\text{mAh g}^{-1})$$
(4)

where *M* is molar mass of the V₂O₅, 181.9; *P*: mass ratio of V₂O₅ in the HVC sample; α : pre-inserted Mg²⁺ ions per mole of V₂O₅ formula; *n*: electrons are consumed in the electrochemical reaction in theory, which equals to 3 when the V₂O₅ cathode operated over the potential range of 1.5-4.0 V (vs. Li⁺/Li).

Morphology	Rate capability Discharge capacity (at <i>x</i> mA g ⁻¹) (mAh g ⁻¹)	Cycling performance Capacity retention (at <i>x</i> mA g ⁻¹ after <i>n</i> cycles)	Ref.*
Nanostrip V ₂ O ₅	427 (7.5 mA g ⁻¹) 390 (15 mA g ⁻¹) 340 (22.5 mA g ⁻¹) 300 (30 mA g ⁻¹)	30% (at 7.5 mA g ⁻¹ after 20 cycles) 25% (at 30 mA g ⁻¹ after 20 cycles)	[62]
DenseandsphericalnanostructuredV2O5particles	403 (30 mA g ⁻¹)		[75]
Spherically shaped dense V_2O_5 cathode	432 (30 mA g ⁻¹) 281 (300 mA g ⁻¹)	61%(at 30 mA g ⁻¹ after 20 cycles)	[76]
Hierarchical V ₂ O ₅ nanobelts	402 (50 mA g ⁻¹)	42%(at 50 mA g ⁻¹ after 50 cycles)	[78]
Plate-like structured V ₂ O ₅	470 (17 mA g ⁻¹) 120 (1360 mA g ⁻¹)	81% (at 170 mA g ⁻¹ after 45 cycles)	[81]
Mulberry-like Mg _{0.1} V ₂ O ₅ spheres	410 (30 mA g ⁻¹) 284 (1500 mA g ⁻¹)	84% (at 30 mA g ⁻¹ after 50 cycles)	This work

Table S2. Comparison of the electrochemical properties of the V_2O_5 nanomaterials within the potential range of 4.0-1.5 V (vs. Li⁺/Li).

* The reference numbers are consistent with those listed in the main manuscript.