Supplementary Information

Hierarchically organized CNT@TiO₂@Mn₃O₄ nanostructures for enhanced lithium storage performance

Du-Juan Yan,^c Xiao-Dong Zhu,^{a, b,}* Ya-Chun Mao,^a Sheng-You Qiu,^c Liang-Liang Gu,^c Yu-Jie Feng,^b and

Ke-Ning Sun ^{b,a,*}

^aAcademy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080,

China

^bState Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin

150090, China

^cDepartment of Chemistry, Harbin Institute of Technology, Harbin 150001, China

*Corresponding Authors.

E-mail: zxd9863@163.com, keningsunhit@126.com.

Fig. S1 – SEM image of CNTs.

Fig. S2 - HRTEM image of Mn_3O_4 nanoparticles.

Fig. S3 – XRD pattern of Mn_3O_4 nanoparticles.

Fig. S4 – (a) Wide-scan survey, (b) C 1s, (c) Ti 2p and (d) Mn 2p XPS spectra of CNT@TiO₂@Mn₃O₄ nanostructures. As to the C1s spectrum, the three peaks located at 284.5, 285.5, and 288.0 eV correspond to the carbon atoms in C-C, C-O, and C=O groups, respectively.¹ In the binding energy of 468-452 eV, the two peaks at 464.6, and 458.9 eV are assigned to Ti $2p_{1/2}$ and $2p_{3/2}$ orbitals.² The high-resolution Mn 2p spectrum shows two major peaks residing at 653.0 and 641.2 eV, which are attributed to Mn $2p_{1/2}$ and $2p_{3/2}$ orbitals, indicating that the Mn atoms are in the form of Mn₃O₄. ³

1 X. Hu, G. Zeng, J. Chen, C. Lu and Z. Wen, J. Mater. Chem. A, 2017, 5, 4535-4542.

2 T. Xia, W. Zhang, J. B. Murowchick, G. Liu, X. Chen, Adv. Energy Mater. 2013, 3, 1516-1523.

3 C. Wang, L. Yin, D. Xiang and Y. Qi, ACS applied materials & interfaces, 2012, 4, 1636-1642.

Fig. S5 – Cycle behavior of CNTs at a current density of 500 mA g^{-1} .

Fig. S6 – Initial three CV curves of $CNT@TiO_2$ nanostructures.

Fig. S7 – Initial three CV curves of Mn_3O_4 nanoparticles.

Fig. S8 – Rate capabilities of CNT@TiO₂@Mn₃O₄ nanostructures. A fairly high reversible capacity is witnessed, being 679, 425, 344, 259 or 157 mA h g⁻¹ at 200, 500, 1000, 2000 or 5000 mA g⁻¹. When the current density is increased to 10000 mA g⁻¹, the reversible capacity is still as high as 97 mA h g⁻¹. Note that even after deep cycling at 10000 mA g⁻¹, the reversible capacity returns to 514 mA h g⁻¹ immediately when the current density is recovered to 200 mA g⁻¹, further confirming good cyclability.

Fig. S9 – Nitrogen adsorption–desorption isotherms of $CNT@TiO_2@Mn_3O_4$ heteroarchitectures, revealing a large BET surface area of 191.8 m² g⁻¹ which is favorable for lithium and electrolyte access.

Fig. S10 – SEM image of the CNT@TiO₂@Mn₃O₄ nanostructures after cycling and the corresponding EDS maps of elemental C, Ti and Mn.

|--|

	Mn ₃ O ₄	CNT@TiO ₂	CNT@TiO2@Mn3O4
C (wt%)	12.01	27.99	21.64