Note added after first publication: this version of the Electronic Supplementary Information published on 21st September 2020 replaces the original version published on 5th June 2017, to address errors in Fig. S1 (see Correction DOI: 10.1039/C9TA90268F for further details).

Electronic Supplementary Information (ESI) for

An Excellent Humidity Sensor based on In-SnO₂ Loaded Mesoporous Graphitic Carbon Nitride

Ritu Malik^a, Vijay K. Tomer^{b,*}, Vandna Chaudhary^c, Manjeet S. Dahiya^d, Anshu Sharma^e, S.P. Nehra^c, Surender Duhan^d, Kamalakannan Kailasam^{b,*}

^a Department of Applied Physics, Mahavir Swami Institute of Technology, Sonepat, Haryana-131001

^b Institute of Nano Science & Technology (INST), Mohali, Punjab, 160062 INDIA

^c Center of Excellence for Energy and Environmental Studies, D.C.R. University of Science & Technology, Murthal, Sonepat, Haryana, 131039 INDIA

^d Department of Materials Science & Nanotechnology, D.C.R. University of Science & Technology, Murthal, Sonepat, Haryana, 131039 INDIA

e Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India

* Corresponding author

E-mail: vjtomer@gmail.com (Vijay K. Tomer)

kamal@inst.ac.in (Kamalakannan Kailasam)

Fabrication and performance test of humidity sensors

The procedure for sensor fabrication and %RH sensing measurements was similar to that described in our earlier reported work.^{1,2} In a typical experimental procedure, the ceramic substrate (13.4mm x 7mm x 0.5mm) consisting of 5 pairs of Ag-Pd interdigitated electrodes were utilized to measure humidity response. To prepare the sensors, a paste of 1:20 weight ratio of sample/ethanol was drop coated on the substrate (between the Ag-Pd tracks) using a 10 µL pipette, where after, the sample coated substrate was left for drying in oven for 2h at 60 °C to form a sensing film of thickness of ~10 µm. The humidity sensing experiments were performed at 25 °C in controlled %RH environments generated by using self made air-tight chambers containing saturated aqueous salts solution of high purity salts of LiCl (11 %RH), MgCl₂•6H₂O (33 %RH), MgNO₃•4H₂O (54 %RH), NaCl (75 %RH), KCl (84 %RH) and K₂SO₄ (98 %RH).¹ During the measurements, the sample coated substrate was put sequentially into the six chambers with different %RH for the uptake of water molecules and impedance changes were measured using a two-probe LCR Hitester (Hioki 3532-50). A 1V AC voltage with frequency ranging from 50 Hz to 5 kHz was applied. The effects of exposing the sensor to laboratory environmental conditions were minimized by quickly completing the chamber change process within 1 s.

Figure S1: (a-c) Low resolution TEM image and (d) SEM image showing morphology and microstructure of nanocasted mesoporous In-SnO₂/meso-CN nanocomposite

References:

- 1. V. K. Tomer, S. T. Nishanthi, S. Gahlot and K. Kailasam, Nanoscale, 2016, 8, 19794–19803.
- 2. V. K. Tomer and S. Duhan, J. Mater. Chem. A, 2016, 4, 1033–1043.