Supporting Information

1D Nanobar-like LiNi_{0.4}Co_{0.2}Mn_{0.4}O₂ as Stable Cathode Material for Lithium-ion Batteries with Superior Long-term Capacity Retention and High Rate Capability

Zhen Chen^{a,b,c}, Dongliang Chao^b, Jilei Liu^{a,b}, Mark Copley^e, Jianyi Lin^f, Zexiang Shen^{b,f,‡}, Guk-

Tae Kim^{c,d,‡}, Stefano Passerini^{c,d,‡}

^a Energy Research Institute (ERI@N), Interdisciplinary Graduate School, Nanyang Technological

University, Research Techno Plaza, 50 Nanyang Drive, 637553, Singapore

^b Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang

Technological University, 21 Nanyang Link, 637371, Singapore

^c Helmholtz Institute Ulm (HIU), Electrochemistry I, 89081 Ulm, Germany

^d Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany

e Johnson Matthey Technology Centre, Reading RG4 9NH, UK

^f Energy Research Institute (ERI@N), Nanyang Technological University, 50 Nanyang Drive, 637553,

Singapore

‡ Corresponding authors.

Email: stefano.passerini@kit.de, guk-tae.kim@kit.edu, zexiang@ntu.edu.sg.

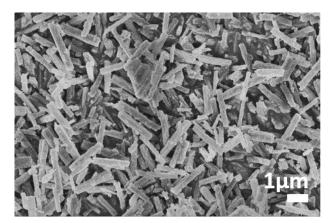


Fig. S1 SEM image of the nanobar-like (1D) $MC_2O_4 \cdot H_2O$ (M=Li, Ni, Co, Mn) precursor.

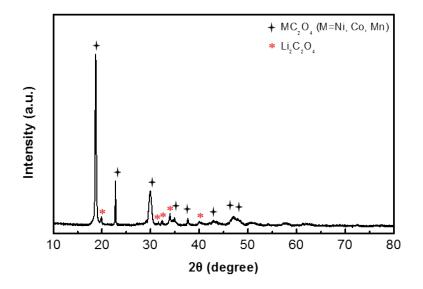


Fig. S2 XRD pattern of the nanobar-like (1D) $MC_2O_4 \cdot H_2O$ (M=Li, Ni, Co, Mn) precursor.

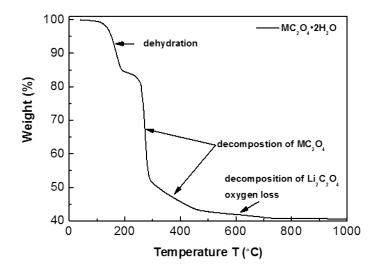
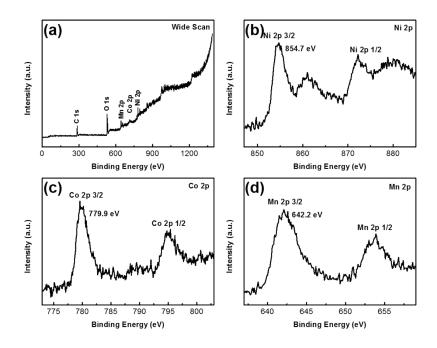



Fig. S3 TGA data of the nanobar-like (1D) MC₂O₄•H₂O (M=Li, Ni, Co, Mn) precursor.

Fig. S4 SEM images of the nanobar-like (1D) $MC_2O_4 \cdot H_2O$ (M=Li, Ni, Co, Mn) precursor after pre-heating at 450 °C.

Fig. S5 X-ray photoelectron spectroscopy spectra (a) wide scan, (b) Ni 2p, (c) Co 2p and (d) Mn 2p of N-NCM-800.

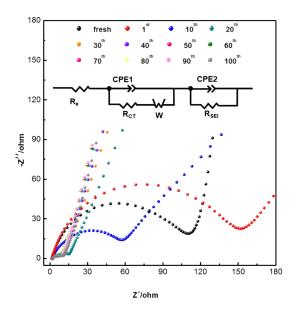


Fig. S6 Selected electrochemical impedance spectra of N-NCM-800.

Fig. S6 shows the selected electrochemical impedance spectra upon 100 continuous charge/discharge cycles at 0.1 C. The nature of the impedance plots is

typical of conventional LIBs, a depressed semicircle in high-middle frequency and followed by a sharp straight line in the low frequency region. The Re shown in the insert panel of equivalent series resistance (ESR) refers to the internal resistance, a combination of total resistance from electrolyte, electrodes, separator. The high-frequency semicircle is assigned to the resistance of the formation of SEI layer and the corresponding constant phase element. The middle-frequency ascribes to the charge transfer resistance and its relative capacitance. The straight line in the low-frequency region corresponds to the Warburg diffusion process.

Reference	Voltage	Specific Capacity/	Rate Capability/	Cycling Retention
	Range/ V	mAh g ⁻¹	mAh g ⁻¹	
NCM ¹	2.0-4.7 V	203 (0.05 C)		82% after 20 cycles at
				0.05 C
NCM ²	2.75-4.35 V	177 (0.2 C)	89 (3 C)	58% after 70 cycles at 1
				С
Zr-doped	2.6-4.7 V	162 (0.2 C)	124 (2 C)	80% after 50 cycles at
NCM ³				0.2 C
				69% after 50 cycles at 2
				С
NCM ⁴	2.0-4.4 V	165 (0.35 C)	70 (7 C)	90% after 50 cycles at
				0.35 C
Bi ₂ O ₃ -coated	2.5-4.6 V	214 (0.1 C)	120 (3 C)	82% after 100 cycles at
NCM ⁵				0.1 C
Micro-ball	2.5-4.5 V	187 (0.1 C)	160 (2 C)	80% after 50 cycles at 5
NCM ⁶			143 (5 C)	С
NCM/SWCNT	2.5-4.5 V	160 (0.1 C)	130 (5 C)	92% after 500 cycles at
composites ⁷			120 (10 C)	5 C
				91% after 500 cycles at
				10 C
Li ₂ ZrO ₃ -coated	2.8-4.5 V	178 (0.075 C)	156 (1.5 C)	96.6% after 50 cycles at
NCM ⁸				0.3 C
This Work	3.0-4.3 V	177 (0.1 C)	123 (5 C)	91% after 100 cycles at
			104 (10 C)	0.1 C
				94% after 100 cycles at
				10 C

Tab. S1 Comparison of electrochemical performance (capacity, rate capability and cycling stability) of the best performing NCM materials.¹⁻⁸

References in ESI.

- 1 S. Wolff-Goodrich, F. Lin, I.M. Markus, D. Nordlund, H.L. Xin, M. Asta, M.M. Doeff, *Phys. Chem. Chem. Phys.*, 2015, **17**, 21778-21781.
- 2 H. Rong, M. Xu, B. Xie, W. Huang, X. Liao, L. Xing, W. Li, *J. Power Sources*, 2015, **274**, 1155-1161.
- 3 Chen, Q., Du, C., Qu, D., Zhang, X. & Tang, Z. *RSC Adv.*, 2015, **5**, 75248-75253.
- 4 H. Yu, Y. Qian, M. Otani, D. Tang, S. Guo, Y. Zhu, H. Zhou, *Energy Environ. Sci.*, 2014, **7**, 1068.
- 5 Bhuvaneswari, D., Babu, G. & Kalaiselvi, N. *Electrochim. Acta*, 2013, **109**, 684-693.
- 6 S.J. Shi, Y.J. Mai, Y.Y. Tang, C.D. Gu, X.L. Wang, J.P. Tu, *Electrochim. Acta*, 2012, **77**, 39-46.

- C. Ban, Z. li, Z. Wu, M.J. Kirkham, L. Chen, Y.S. Jung, E.A. Payzant, Y. Yan, M.S. Whittingham,
 A.C. Dillon, *Adv. Energy Mater.*, 2011, 1, 58-62.
- 8 Ni, J., Zhou, H., Chen, J. & Zhang, X. *Electrochim. Acta*, 2008, **53**, 3075-3083.