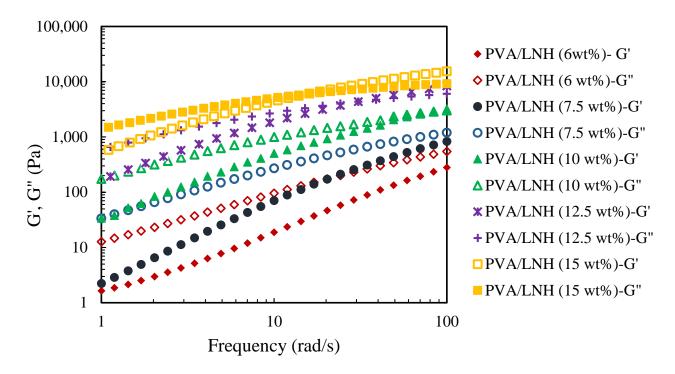
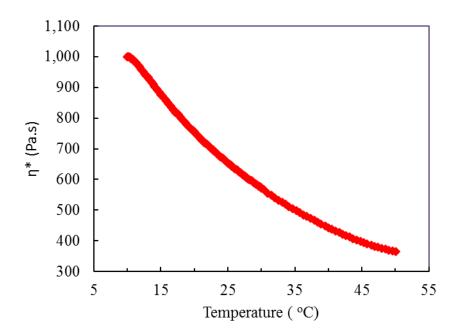

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

A Temperature-Responsive Poly (vinyl alcohol) Gel for Controlling Fluidity of an Inorganic Phase Change Material


Parvin Karimineghlani,^a Emily Emmons,^a Micah J. Green,^b Patrick Shamberger,^{a*} and Svetlana Sukhishvili^{a*}


Fig. S1. Strain-dependent G' for 15 wt% PVA solutions in LNH and H₂O for 87% and 98% degrees of PVA hydrolysis. Testing was conducted at a temperature of 25 °C with an angular frequency of 10 rad/s.

^a Department of Material Science and Engineering, Texas A&M University, College Station, 77843, TX, USA

^b Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, 77843, TX, USA

Fig. S2. Frequency dependencies of G' and G" in PVA₉₈/LNH system at different polymer concentrations. Temperature was 25 °C. Measurements were performed at $\gamma_L = 1\%$.

Fig. S3. Complex viscosity of PVA/LNH gels as a function of temperature during heating. Testing was conducted at an angular frequency of 10 rad/s and $\gamma_L = 10\%$.