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Preparation of graphene oxide (GO)

  Graphene oxide (GO) was chemically exfoliated from natural graphite by the 

modified Hummers’ method. Typically, 10 g graphite powder and 5 g NaNO3 were 

dispersed in 230 mL concentrated H2SO4 (98%) with mechanical stirring and ice-bath 

treatment for 30 min. Then 30 g KMnO4 was slowly added into the above system within 

1 h, followed by continuous stirring for 2 h with the temperature of the system being 

controlled below 10 oC by an ice-bath. Subsequently, the system was transferred to an 

oil bath with vigorous stirring at 35 oC for 2 h. After which, 460 mL deionized water 

was added dropwise into the reaction system and the temperature was simultaneously 

raised to 95 oC for 15 min. Finally, the reaction solution was poured into a 2 L beaker 

with 700 mL deionized water to terminate the oxidation reaction. Next 50 mL H2O2 
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was added dropwise into the solution with hand stirring. The resultant GO solution was 

allowed to stand overnight. The supernatant was poured off and 500 mL 5% HCl 

aqueous solution (repeating at least 3 times) or water was added to remove foreign ions. 

The residual foreign ions were further removed by dialysis for at least 5 days until the 

pH≥5. At last, the obtained GO aqueous solution was freeze-dried into a spongelike 

solid to reserve. 

Characterization of PDMPD and PFR-fRGO.
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Figure S1. (a) H1 NMR and (b) FTIR spectra of PDMPD. 

The chemical structures of PDMPD were characterized by H1 NMR and FTIR. The 

expected characteristic peaks of H (Figure S1a), including 8.25 ppm (-NH-, 1H), 7.5-

6.5 ppm (benzene ring, 12H), 3.6 ppm (-CH2-, 2H) and 3.0 ppm (terminal -NH2), are 

observed on the H1 NMR spectrum of PDMPD. Moreover, the FTIR absorption peaks 

of characteristic groups (Figure S1b), such as N-H stretching vibration at 3373 cm-1, C-

H stretching vibrations at 3192, 3031, 2920 cm-1, skeletal vibrations of phenyl at 1614, 

1512 cm-1, C-N stretching vibration at 1387 cm-1, P=O stretching vibration at 1200 

cm-1, P-N stretching vibration at 1020 cm-1, and P-O-C stretching vibration at 943 cm-

1 are found in the FTIR spectrum of PDMPD. These results are consistent with the 

previous literature,1 suggesting the successful synthesis of polymeric flame retardant.
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Figure S2. High-resolution C 1s XPS spectra of (a) GO, (b) RGO and (c) PFR-fRGO.

Density measurements

Density measurements based on buoyancy method (Archimedes’ principle) were 

performed on a METTLER-TOLEDO analytical balance with a density determination 

kit. The density of a solid is determined with the aid of a liquid whose density ρ0 is 

known (water in this work, ρ0=1.0 g/cm3). The solid is weighed in air (mA) and then in 

the auxiliary liquid (mB). The solid density ρ can be calculated from the two weighings 

as follows: 

                                            (1)aa
BA

A

mm
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

 )( 0

where ρa is the air density (0.0012 g/cm3). 
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Figure S3. Experimental (dots) and theoretical (line) densities of epoxy composites.

The theoretical density was estimated by Rules of Mixtures based on the assumption 

of ideal without defects:2
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where ρ is the density of composite, ρi is the densities of components, fi and mi are the 

volume and mass fractions of components, respectively. In this work, the densities of 

matrix, Al2O3 and graphene are 1.221, 3.95 and 1.06 g/cm3, respectively.3 The results 

of the experimental and theoretical densities are shown in Figure S3.

XRD analyses of epoxy composites
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Figure S4. XRD spectra of α-Al2O3 and epoxy composites.
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Morphology of epoxy-based composites
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Figure S5. SEM images and EDX spectra of EP/Al2O3 at top and bottom regions.

  The settlement characteristics of microparticles under the gravity action is noteworthy 

during curing process due to the low viscosity of epoxy and poor interfacial interaction 

between Al2O3 and epoxy, which leads to a lower filler loading relative to the whole at 

top region. As shown in Figure S5, the EDX spectra show that the Al element content 

at bottom is higher than that at top, which confirms the settlement characteristics of Al-

2O3 in EP/Al2O3 composites. The introduction of graphene was expected to increase the 

viscosity of epoxy by forming 3D network structure, which further weakened the 

settlement action of Al2O3. In fact, as shown in Figure S6 and S7, the Al element 

contents are almost consistent in the top and bottom region, suggesting a uniform 

distribution of Al2O3 in epoxy, which is favour of the thermal conductivity of 

composites.
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Figure S6. SEM images and EDX spectra of EP/Al2O3/RGO at top and bottom regions.
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Figure S7. SEM images and EDX spectra of EP/Al2O3/PFR-fRGO at top and bottom 

regions.
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Mechanical properties of epoxy-based composites
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Figure S8. Storage modulus of neat EP, EP/RGO, EP/PFR-fRGO, EP/Al2O3, 

EP/Al2O3/RGO and EP/Al2O3/PFR-fRGO composites with 50 wt% Al2O3 particles and 

1 wt% graphene. 

  Dynamic mechanical analyses (DMA) of EP/graphene composites were carried out 

on a TA Instruments Q800 DMA in single cantilever beam mode with an oscillatory 

frequency of 1 Hz, to confirm the change of storage modulus of epoxy and EP/Al2O3 

by the introduced graphene. As shown in Figure S8, incorporating a large amount of 

Al2O3 particles (50 wt%) into epoxy results in the significant increase of the storage 

modulus below the glass-transition temperature (Tg), which are further improved by 

adding graphene due to the immobilization effect of Al2O3 and graphene for polymer 

chains. Moreover, flame retardant functionalization for graphene can effectively perfect 

the interfacial bonding, resulting in a higher storage modulus. 
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Figure S9. (a) Stress-strain curves and (b) tensile property parameters of neat EP, 
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EP/Al2O3, EP/Al2O3/RGO and EP/Al2O3/PFR-fRGO composites with 50 wt% Al2O3 

particles and 1 wt% graphene.

  Tensile testing was performed by using a SUNS UTM2203 universal tensile testing 

machine at a crosshead rate of 10 mm/min according to the standard GB/T 1040-2006. 

Figure S9 shows the typical stress-strain curves and tensile properties of neat EP, 

EP/Al2O3, EP/Al2O3/RGO and EP/Al2O3/PFR-fRGO composites with 50 wt% Al2O3 

particles and 1 wt% graphene. As a hard but brittle polymer, epoxy resin presents a high 

tensile strength of 83.6 MPa but a low elongation at break of 11.5% (low tensile 

toughness). Incorporating 50 wt% Al2O3 particles into epoxy matrix leads to the 

decrease of both strength and toughness due to the poor interfacial interaction and 

serious agglomeration behavior. Adding 1 wt% graphene into EP/Al2O3 composite is 

able to effectively improve the dispersion (Figure S6 and S7) and interfacial adhesion 

(Fig. 3e and 3f) of Al2O3 particles in EP matrix, further resulting in the increase of 

tensile strength and toughness (Figure S9).

Thermal conductivity of epoxy-based composites
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Figure S10. Thermal and electrical conductivity as a function of graphene content for 

EP/Al2O3/graphene composites with 50 wt% Al2O3 particles. 

  Figure S10 shows the thermal and electrical conductivity as a function of graphene 

content for EP/Al2O3/graphene composites with 50 wt% Al2O3 particles. The thermal 

conductivity values of composites exhibit a continuous increase as a function of 
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graphene loading within testing range due to more conduction paths formed by the 

adding graphene. 

The volume electrical conductivity measurements were performed on a PC40B 

digital resistance tester (Shanghai Anbiao Electronics Co., Ltd. China) according to the 

standard GB/T 1410-2006. The disc-like samples were 100 mm in diameter and 2 mm 

in thickness, and the applied voltage to the sample was fixed at 500 V. As shown in 

Figure S8, the electrical conductivity of composites improves remarkably with the 

increase of graphene content, and a sharp increase was observed between 1 and 2 wt% 

PFR-fRGO, which means a percolation threshold behavior happened, i.e., forming a 

conductive network during this loading range. Moreover, the composite containing 

RGO shows a higher electrical conductivity compared to the PFR-fRGO composite, 

which was ascribed to the barrier effect for electronic transmission by the coating of 

flame retardant (PDMPD) chains. Taking into account the thermal and electrical 

conductivity, the composites with 1 wt% PFR-fRGO were believed to meet the 

requirement of electric insulation and thermal conductivity for electronic packaging 

materials.
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Figure S11. The synergistic effect strength of graphene and Al2O3 as a function of 

Al2O3 content.

  The strength of the synergistic effect is defined as (Kc1-Kc0)/Kc0,4 where Kc1 is the 

thermal conductivity of EP/Al2O3/RGO or EP/Al2O3/PFR-fRGO, Kc0 is the thermal 

conductivity of EP/Al2O3.
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Morphology and size of α-Al2O3
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Figure S12. (a) SEM image and (b) particle size distribution of α-Al2O3 particles.

  Figure S12 is the SEM image and particle size distribution of α-Al2O3 particles. The 

KPJ01 α-Al2O3 exhibits an irregular shape with a relatively homogeneous size. For 

convenience, the irregular α-Al2O3 were regarded as spherical particles in our model-

fitting process. The mean diameter of α-Al2O3 is calculated based on the statistical data 

of particles size by Nano Measurer 1.2 software from Figure S12a, and the result was 

shown in Figure S12b. The obtained mean diameter of α-Al2O3 is 0.98 μm, which is 

well agreement with the product information given by manufacturer (D50=1.1μm). 

Char analyses

Figure S13. Digital photos of the residues after cone test of (a) neat EP, (b) EP/RGO, 

(c) EP/PFR-fRGO, (d) EP/Al2O3, (e) EP/Al2O3/RGO and (f) EP/Al2O3/PFR-fRGO.
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Figure S14. SEM images the residues after cone test with different magnification of (a, 

b) EP/RGO and (c, d) EP/PFR-fRGO composites
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