1	Electronic Supporting Information
2	
3	Pen-lithography for flexible microsupercapacitors with layer-by-layer
4	assembled graphene flake/PEDOT nanocomposite electrodes
5	Hee Uk Lee, ^a Seung Wook Kim, ^{a, *}
6	
7	^a Department of Chemical and Biological Engineering, Korea University, 5 Ga, Anam-Dong,
8	Sungbuk-Gu, Seoul 136-701, Republic of Korea.

1

- 2 Figure S1. Schematic process of fabrication of the graphene/PEDOT microsupercapacitor
- 3 (MSC) (Area: 4.68 cm²).

2 Figure S2. (a) Specific capacitance as a function of the scan rate, (b) Ragone plot of the
3 previous literature for the mass loading of 3-layer graphene/PEDOT nanocomposite MSC.

5 The mass loading of the 3 layer graphene/PEDOT MSC is 1.8 mg. Using alpha step, we can 6 measure the thickness of the 3 layer graphene/PEDOT MSC ($20.7 \pm 4.4 \mu m$), as shown in 7 Figure 2f. The area of MSC was 4.68 cm². According to the mass, area and the thickness of 8 the 3 layer graphene/PEDOT MSC, we can calculate and obtain the density of 9 graphene/PEDOT MSC (0.19 g cm^{-3}). In addition, the specific capacitances (C_{spe}) of the 3 10 layer graphene/PEDOT MSC could be calculated from the CV curves according to the 11 following equations:¹

$$^{12}_{13} \quad C_{spe} = \frac{1}{m \cdot v \cdot \Delta V} \int i(V) dV$$

4

where, *m* is the mass of active materials, *v* is the potential scanrate, ΔV is the potential window in CV, i(V) is the voltammetric current. The C_{spe} of graphene/PEDOT MSC was about 60.7 F g⁻¹. The calculated power and energy density were ranged from 0.11 up to 0.62 KW kg⁻¹ and from 2.78 up to 12.14 Wh kg⁻¹ respectively.

2 Figure S3. Properties of the graphene/PEDOT characterized by (a) XPS spectra, (b) XRD

3 pattern.

5

Figure S4. Electrochemical properties of the layered graphene/PEDOT MSCs, respectively
(a) CV curves at scan rates from 1 to 100 mV·s⁻¹, and (b) Galvanostatic charge-discharge
curves at current densities from 0.05 to 0.5 mA·cm⁻².

1 Calculations

2 The following equation was used for calculating the profile of the graphene/PEDOT
3 microsupercapacitors:⁶⁻⁸

5 • The areal capacitance $({}^{C}_{A})$ / volumetric capacitance $({}^{C}_{V})$ can be calculated via the 6 equation,

$$C = \frac{I \cdot \Delta t}{\Delta V \cdot A(or \, V)} \tag{1}$$

I = Constant current used for charging and discharging

 $10 \quad \Delta t = \text{Discharge time}$

- ΔV = The operating voltage range
- A = Area of the graphene/PEDOT electrode
- V = Volume of the graphene/PEDOT electrode

• The real $(C'(\omega))$ and imaginary $(C''(\omega))$ parts of the complex capacitance vs. frequency

2 can be calculated via the equations:

$$C'(\omega) = \frac{-Z''(\omega)}{\omega |Z(\omega)|^2}$$

$$C''(\omega) = \frac{Z'(\omega)}{\omega |Z(\omega)|^2}$$

 $Z'(\omega)$ = The real part of the impedance

 $_{6}$ $-Z''(\omega)$ = The imaginary part of the impedance

7
$$\omega$$
 = The pulsation

9 •
$$\omega$$
 is calculated by the equation:

 $\omega = f * 2\pi$

f = Frequency range from 100 kHz to 0.01 Hz

13 • The Coulombic efficiency ($\eta(\%)$) is based on the following equation:

$$\eta(\%) = \frac{t_D}{t_C} \times 100$$

 t_D = The discharging times

 t_{C} = The charging times

• The volumetric energy density E_V (Wh·cm⁻³) and power density P_V (W·cm⁻³) are calculated

18 by the following equations:

$$E_V = \frac{C_V \cdot (\Delta V)^2}{7200}$$

$$P_V = \frac{EV \cdot 3600}{\Delta t}$$

 $_{3}$ C_{V} = The volumetric capacitance (1)

 ΔV = The operating voltage range

 $_5 \Delta t$ = The discharging times.

- 2 Figure S5. SEM images of 3-layers graphene/PEDOT nanocomposites MSC (a) before and
- 3 (b) after 2,500 cycling test.
- 4

- 6 Figure S6. Digital images of the all-solid-state microsupercapacitor device at different
- 7 bending radius ($\rho=7,\,5,\,and\,3$ mm).

1 References

- 2 1. J. G. Wang, Y. Yang, Z. Huang, F. Kang, *Electrochimica Acta*, 2014, 130, 642-649.
- 3 2. J. Liu, L. Zhang, H. B. Wu, J. Lin, Z. Shen and X. W. Lou, *Energy Environ. Sic.*, 2014, 7,
 3709-3719.
- 5 3. S. Liu, K. H. Kim, J. M. Yun, A. Kundu, K. V. Sankar, U. M. Patil, C. Ray and S. C. Jun,
- 6 J. Mater. Chem. A, 2017, 5, 6292-6298.
- 7 4. Y. Guo, W. Li, H. Yu, D. F. Perepichka, H. Meng, Adv. Energy Mater., 2017, 7, 1601623.
- 8 5. D. Aradilla, G. Bidan, P. Gentile, P. Weather, F. Thissandier, V. Ruiz, P. Gómez-Romero,
- 9 T. J. S. Schubert, H. Sahin, S. Sadki, *RSC Adv.*, 2014, 4, 26462-26467.
- 10 6. P. L. Taberna, P. Simon and J. F. Fauvarque, J. Electrochem. Soc., 2003, 150, A292–A300.
- 11 7. C. Portet, G. Yushin and Y. Gogotsi, *Carbon*, 2007, **45**, 2511–2518.
- 12 8. D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, and Y. Chen, *Nat.*13 *Nanotechnol.*, 2014, 9, 555-562.