Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supporting Information

Template-free preparation of layer-stacked hierarchical porous

carbons from coal tar pitch for high performance all-solid-state

supercapacitors

Taotao Guan,^{ab} Kaixi Li,^{*a} Jianghong Zhao,^{*c} Rijie Zhao,^{ab} Guoli Zhang,^{ab} Dongdong Zhang^{ab} and Jianlong Wang^a

Contents:

- 1. Galvanostatic charge-discharge curves at a current density of 1 A g^{-1} in 6 M KOH electrolyte for the LHPCs activated by using different alkali-carbon ratios (**Fig. S1**).
- 2. XRD patterns (a) and Raman spectra (b) of CTPA, BA, BSA and LHPCs (Fig. S2).
- 3. XPS spectra of CTPA, BA, BSA and LHPCs (Fig. S3).
- 4. Galvanostatic charge/discharge curves of LHPCs at current densities changing from 0.5

to 50 A g⁻¹ (a) and CV curves of LHPCs at scan rates varying from 5 to 200 mV s⁻¹(b)

(Fig.S4).

- 5. CV capacitance at different scan rates from 5 to 500 mV s⁻¹ (Fig.S5).
- 6. Cycling stability measured for 100,000 cycles at a current density of 5 A g⁻¹ (**Fig. S6**).
- 7. Element analysis and XPS analysis of CTP, B, BS and BSH (Table S1).
- 8. XRD parameters and XPS analysis of CTPA, BA, BSA and LHPCs (Table S2).
- 9. Specific surface area and porous parameters of CTPA, BA, BSA and LHPCs (Table S3).

 Comparison of electrochemical performances of various porous carbons derived from pitch (Table S4).

^a Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan, Shanxi 030001, P. R. China.

^b University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China.

^c Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi, PR China.

Fig. S1 Galvanostatic charge-discharge curves at a current density of 1 A g^{-1} in 6 M KOH electrolyte for the LHPCs activated by using different alkali-carbon ratios.

Fig. S2 XRD patterns (a) and Raman spectra (b) of CTPA, BA, BSA and LHPCs.

Fig. S3 XPS spectra of CTPA, BA, BSA and LHPCs.

Fig.S4 Electrochemical performances of LHPCs in a three-electrode system in the 6M KOH electrolyte: galvanostatic charge/discharge curves at different current densities from 0.5 to 50 A g⁻¹ (a) and CV curves at different scan rates from 5 to 200 mV s⁻¹(b).

Fig.S5 Specific capacitance at different scan rates from 5 to 500 mV s⁻¹.

Fig. S6 Cycling stability measured for 100,000 cycles at a current density of 5 A g^{-1} .

Sample · CTP B	Element analysis (wt%)				C/Ub	XPS analysis (at. %)				
	С	Н	N	S	Oa	C/H [*]	С	N	S	0
СТР	92.01	4.91	0.87	0.91	1.30	1.56	96.54	0.61	0.74	2.11
В	92.38	4.44	0.98	0.78	1.42	1.73	96.33	0.71	0.65	2.31
BS	74.14	2.93	0.87	5.91	16.15	2.11	81.10	0.73	1.85	16.32
BSH	77.54	2.04	0.88	5.53	14.01	3.17	83.45	0.68	1.42	14.45

Table S1 Element analysis and XPS analysis of CTP, B, BS and BSH.

^a The difference; ^b Carbon/hydrogen atomic ratio.

Sample –	XRD par	ameters	XPS analysis				
	d ₀₀₂	L _c	С	Ν	S	0	
СТРА	0.351	3.7	93.79	0.61	0.15	5.45	
BA	0.347	3.9	94.81	0.53	0.11	4.55	
BSA	0.401	1.9	93.06	0.17	0.47	6.30	
LHPCs	0.388	2.3	93.15	0.30	0.28	5.27	

Table S2 XRD parameters and XPS analysis of CTPA, BA, BSA and LHPCs.

Sample	S _{BET} (m ² g ⁻¹)	S_{micro} (m ² g ⁻¹)	S_{meso} (m ² g ⁻¹)	V _{total} (cm ³ g ⁻¹)	V _{micro} (cm ³ g ⁻¹)	V _{meso} (cm ³ g ⁻¹)	V _{macro} (cm ³ g ⁻¹)
СТРА	2535.6	680.9	855.7	1.34	0.22	0.53	0.59
BA	2520.2	1538.2	492.7	1.29	0.74	0.35	0.2
BSA	3256.1	915.0	1290.7	1.89	0.36	0.99	0.54
LHPCs	3114.2	1012.0	1090.9	1.98	0.51	1.04	0.43

Table S3 Specific surface area and porous parameters of CTPA, BA, BSA and LHPCs.

 S_{BET} : BET surface area was calculated by the BET equation over a relative pressure range from 0.1 to 0.3.

 V_{total} : Total pore volume was obtained by the single point adsorption data at a relative pressure of 0.98.

 S_{micro} and V_{micro} : Micropore surface area and corresponding pore volume were estimated by using the *t*-plot method.

 S_{meso} and V_{meso} : Mesopore surface area and corresponding pore volume were calculated by the BJH method.

 V_{macro} : Macropore volume was determined from the balance among V_{total} , V_{micro} and V_{meso} ($V_{macro} = V_{total} - V_{micro} - V_{meso}$).

Drecursor	Structure	\mathbf{S}_{BET}	$C(\mathrm{E}\mathrm{g}^{-1})$	Flectrolytes	Ref	
	Structure	$(m^2 g^{-1})$	C (r g)	Licenolytes		
CTD	Hierarchical porous carbon	1604	$200(1 \text{ A} \text{ cm}^{-1})$	(M VOU	Г <i>4</i> Т	
CIP	sheets		290 (1 A g ⁻)	OM KUH	[4]	
Sulfonated	Hierarchical porous	2540	277 (2 ··· V1)	(M KOU	5447	
pitch	carbons	3348	$2/7 (2 \text{ mVs}^3)$	OM KUH	[41]	
Pitch-based		0.02	276 (5		[47]	
cokes		983	$2/6 (5 \text{ mVs}^{-1})$	$1MH_2SO_4$	[43]	
graphene	TT '		20((0.1.4.)			
oxide/pitch	Hierarchical porous	2196	290 (0.1 A g	6M KOH	[57]	
oxide	carbons		1)			
			287 (50 mV s ⁻			
СТР	Porous carbons	1409	¹)	6М КОН	[58]	
СТР	Layer-stacked hierarchical		357 (0.5 A g-		This	
	porous carbons	3114	¹)	6М КОН	work	
СТР	Layer-stacked hierarchical	2114	484 (100 mV		This	
	porous carbons	3114	s ⁻¹)	6М КОН	work	

Table S4 Comparison	of electrochemical	performance of	various r	porous c	carbons i	from [•]	pitch
i abie o i companson	of cicculocitoinenneur	periornance of	, various p	5010u5 C	Juioons	nom	prion