Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Hierarchically Porous Nitrogen-Doped Carbon Nanotubes Derived

from Core-shell ZnO@Zeolitic Imidazolate Framework Nanorods for

Highly Efficient Oxygen Reduction Reactions

Peng-Chao Shi,^{ab} Jun-Dong Yi,^a Tao-Tao Liu,^a Lan Li,^a Lin-Jie Zhang,^a Chuan-Fu Sun,^a Yao-Bing Wang,^a Yuan-Biao Huang^{*a} and Rong Cao^{*a}

^aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P.R.China

^bCollege of Chemistry, Fuzhou University, Fuzhou, 350002, P.R. China

*Email - rcao@fjirsm.ac.cn

Fig. S1 (a) N₂ sorption isotherms of ZnO@ZIF-8-24h and ZnO@ZIF-8-48h. (b) The pore size distribution of ZnO@ZIF-8-24h and ZnO@ZIF-8-48h based on H-K method. (c) N₂ sorption isotherms of NCNTs and C-ZIF-8-1000. (d) Pore size distribution plots of NCNTs and C-ZIF-8-1000 based on the non-local density functional theory (NLDFT).

Fig. S2 (a) AFM image of NCNT-24-1000. (b) Height profile along the line scan in a. (c) AFM image of NCNT-48-1000. (d) Height profile along the line scan in c.

Fig. S3 SEM images (a) NCNT-48-800, (b) NCNT-24-900, (c) NCNT-48-900, (d) NCNT-24-1000, (e) NCNT-48-1000, TEM image (f) NCNT-24-1000, (g) NCNT-48-1000, inset in g the SAED pattern of NCNT-48-1000. (h) HRTEM image of NCNT-48-1000.

Fig. S4 N content (at %) and C/N atomic ratios in NCNTs based on XPS.

Fig. S5 (a) CV curves of NCNT-48-1000, C-ZIF-8-1000, NCNT-24-800. (b) K-L plots of NCNT-24-800 at different voltages. (c) LSVs of NCNT-48-1000 with various rotation speeds. (d) K–L plots of NCNT-48-1000 at different voltages. (e) LSVs of NCNT-48-900 with various rotation speeds. (f) K–L plots of NCNT-48-900 at different voltages.

Table S1. Comparison of ORI	R catalytic performances u	under alkaline conditions	between metal-free
-----------------------------	----------------------------	---------------------------	--------------------

Sample	Precursors	Onset	Half-wave	Current	Refs.
		potential	potential	density	
		(V) V vs	(V) V vs	(rpm)	
		RHE	RHE		
NCNT-24-800	ZnO@ZIF-8	1.025	0.862	5.68 (1600)	Present
					Work
NCNT-48-1000	ZnO@ZIF-8	0.995	0.831	5.5 (1600)	Present
					Work
GPC-1000-5	ZIF-8	0.876	0.705	5.66 (1600)	S 1
P-Z8-Te-1000	Te@ZIF-8	0.895	-0.161	Not	S2
				mentioned	
FeIM/ZIF-8	Fe-ZIF & ZIF-8	0.915	0.755 V	Not	S3
	mixture			mentioned	
NC900	ZIF-8	0.83	Not	4.9 (2500)	S4
			mentioned		
Co@Co3O4@C-CM	ZIF-9	0.93	0.81	Not	S5
				mentioned	
FePhen@MOF-ArNH ₃	ZIF-8 & 1,10-	1.03	0.86	Not	S 6
	phenanthroline			mentioned	
ZIF-67-900	ZIF-67	0.91	0.85	5 (1600)	S7
Carbon-L	ZIF-7	0.861	0.697	4.59 (1600)	S 8
MOFCN900	melamine & MOF-	0.99	Not	4.2 (1600)	S9
	5		mentioned		

NCNTs and carbons materials derived from MOFs in previous reports

The reversible hydrogen electrode (RHE) potential converts to the Ag/AgCl electrode using: E (RHE) = E (Ag/AgCl) + 0.965 V.

Fig. S6. A proposed mechanism of ORR catalyzed by NCNTs

Four-electron mechanism^{S10}:

 $O_{2} + * \rightarrow O_{2} * (a \rightarrow b)$ $O_{2}^{*} + H_{2}O + e^{-} \rightarrow OOH^{*} + OH^{-} (b \rightarrow c)$ $OOH^{*} + e^{-} \rightarrow O^{*} + OH^{-} (c \rightarrow d)$ $O^{*} + H_{2}O + e^{-} \rightarrow OH^{*} + OH^{-} (d \rightarrow e)$ $OH^{*} + e^{-} \rightarrow OH^{-} + * (e \rightarrow f)$ **Two-electron mechanism:** $O_{2} + * \rightarrow O_{2}^{*} (a \rightarrow b)$ $O_{2}^{*} + H_{2}O + e^{-} \rightarrow OOH^{*} + OH^{-} (b \rightarrow c)$ $OOH^{*} + e^{-} \rightarrow OOH^{-} + * (c \rightarrow g)$

References

S1. L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian, Y. Zhou, W. Li and M. Hong, Nanoscale, 2014, 6, 6590-6602.

S2. W. Zhang, Z. Y. Wu, H. L. Jiang and S. H. Yu, J. Am. Chem. Soc., 2014, 136, 14385-14388.

S3. D. Zhao, J.-L. Shui, C. Chen, X. Chen, B. M. Reprogle, D. Wang and D.-J. Liu, *Chem. Sci.*, 2012, **3**, 3200-3205.

S4. A. Aijaz, N. Fujiwara and Q. Xu, J. Am. Chem. Soc., 2014, 136, 6790–6793.

S5. W. Xia, R. Zou, L. An, D. Xia and S. Guo, Energy. Environ. Sci., 2015, 8, 568-576.

S6. K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy, W. Liang, M. T. Sougrati, F. Jaouen and S.

Mukerjee, Nat. Commun., 2015, 6, 7343.

- S7. X. Wang, J. Zhou, H. Fu, W. Li, X. Fan, G. Xin, J. Zheng and X. Li, J. Mater. Chem. A, 2014, 2, 14064-14070.
- S8. P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun and D. Cao, *Energy Environ. Sci.* 2014, **7**, 442-450.
- S9. S. Pandiaraj, H. B. Aiyappa, R. Banerjee and S. Kurungot, Chem. Commun., 2014, 50, 3363-3366.

S10. Y. Jiao, Y. Zheng, M. Jaroniecb and S. Z. Qiao, *Chem. Soc. Rev.*, 2015, 44, 2060-2086.