Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017

Supporting Information

Ce-doped $La_{0.7}Sr_{0.3}Fe_{0.9}Ni_{0.1}O_{3-\delta}$ as Symmetrical Electrode for High Performance Direct Hydrocarbon Solid Oxide Fuel Cell

Liuzhen Bian ^{*a*}, Chuancheng Duan ^{*b*}, Lijun Wang, ^{*}*c* Ryan O'Hayre ^{*b*}, Jin Cheng ^{*d*} and Kuo-Chih Chou ^{*a*}.

^a State Key Laboratory of Advanced Metallurgy University of Science and Technology Beijing Beijing 100083, P.R. China
^b Department of Metallurgical and Materials Engineering Colorado School of Mines
1500 Illinois St. Golden, CO 80401, USA
^c Collaborative Innovation Center of Steel Technology University of Science and Technology Beijing Beijing, 100083, P.R. China
^d Metallurgical Experimental Center of University of Science and Technology Beijing Equipment Instruction University of Science and Technology Beijing Beijing, 100083, P.R. China

*Corresponding author: L.J. Wang. Email: lijunwang@ustb.edu.cn;

Table S1 Comparison of the cell performance for $LaFeO_{3-\delta}$ based-SSOFC symmetrical electrodes using H₂ as fuel.

electrode	electrolyte	thickness	temperature	PPD	reference
		(µm)	(°C)	(mW cm-2)	
La _{0.7} Sr _{0.3} Fe _{0.9} Ni _{0.1} O _{3-δ}	LSGM	300	800	678	this work
			700	254	
La _{0.6} Ce _{0.1} Sr _{0.3} Fe _{0.9} Ni _{0.1} O _{3-δ}	LSGM	300	800	653	
			700	303	
La _{0.5} Sr _{0.5} Fe _{0.8} Cu _{0.2} O _{3-δ}	SSZ ^{a)}	230	800	577	1
La _{0.6} Sr _{0.4} Fe _{0.8} Cu _{0.2} O _{3-ō}	LSGM	300	800	162	2
La _{0.7} Sr _{0.3} Fe _{0.7} Ga _{0.3} O _{3-δ}	LSGM	300	800	489	3
La _{0.6} Sr _{0.4} Fe _{0.9} Sc _{0.1} O _{3-δ} infiltrated LSGM	LSGM	18	800	560	4
La _{0.6} Ca _{0.4} Fe _{0.8} Ni _{0.2} O _{3-δ} infiltrated SDC	SDC	300	800	510	5
La _{0.4} Sr _{0.6} Co _{0.2} Fe _{0.7} Nb _{0.1} O _{3-δ}	LSGM	300	800	380	6

SSZ^a): Sc and Ce doped ZrO₂ 10Sc1CeSZ

Fig. S1 SEM images of (a, b) as-synthesized LSFNi and CLSFNi; (c, d) reduced LSFNi and CLSFNi under 10% H_2 atmosphere at 800 °C for 10 h; (e) SEM image of CLSFNi at low magnification.

Table S2 the EDS results of as-synthesised CLSFNi in Fig. S1.

Elements	0	Fe	Ni	Sr	La	Ce
Point 1 (atomic %)	69.84	7.23	0.66	3.80	5.17	13.29
Point 2 (atomic %)	65.05	16.27	1.21	7.00	8.64	1.83
Point 3 (atomic %)	71.58	9.38	0.52	4.56	5.66	8.30

Fig. S2 Post-mortem XRD patterns of samples after electrical conductivity measurement.

Fig. S3 Post-mortem cross-section microstructure of samples after electrical conductivity measurement. (a) LSFNi; (b) CLSFNi.

Fig. S5 Fitting results of EIS for H_2 -fueled symmetrical cells.(a, c) LSFNi electrode; (b, d) CLSFNi electrode.

Fig. S6 Stability of the LSFNi symmetrical cell with H_2 (3% H_2O) under a constant current density of 600 mA cm⁻² at 800 °C.

Fig. S7 Fitting results of EIS for CH₄-fueled symmetrical cells.(a) LSFNi electrode; (b) CLSFNi electrode.

Fig. **S8** Microstructure and cross section of symmetrical cells. (a) LSFNi/LSGM/LSFNi after stability testing with H_2 fuel; (b) as CLSFNi/LSGM/CLSFNi after stability testing with CH₄ as fuel; (c) cathode section of (b); (d) anode section of (b).

References for supplementary information:

- [1]. J. Lu, Y. M. Yin, J. C. Li, L. Xu, Z. F. Ma, *Electrochem. Commun.* 2015, 61, 18-21.
- [2]. F. Zurlo, I. N. Sora, V. Felice, I. Luisetto, C. D'Ottavi, S. Licoccia, E. Di Bartolomeo, *Acta Mater.* 2016, **112**, 77-83.
- [3]. Z. B. Yang, Y. Chen, C. L. Jin, G. L. Xiao, M. F. Han, F. L. Chen, *RSC Advances* 2015, 5, 2702-2705.
- [4]. X. Liu, D. Han, Y. Zhou, X. Meng, H. Wu, J. Li, F. Zeng, Z. Zhan, J. Power Sources 2014, 246, 457-463.

- [5]. G. M. Yang, C. Su, Y. B. Chen, M. O. Tade, Z. P. Shao, J. Mater. Chem. A 2014, 2, 19526-19535.
- [6]. Z. Yang, N. Xu, M. Han, F. Chen, Int. J. Hydrogen Energy 2014, 39, 7402-7406.