Electronic Supplementary Information

Self-Growth-Templating Synthesis of 3D N,P,Co-Doped Mesoporous Carbon Frameworks for Efficient Bifunctional Oxygen and Carbon Dioxide Electroreduction

Fuping Pan,^{a,b} Aimin Liang,^a Youxin Duan,^a Qiao Liu,^c Junyan Zhang,^{*a} Ying Li,^{*b}

^a State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, China

^b Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA

^c Institute of Materials, Ningbo University of Technology, Ningbo 315016, China

Corresponding Author

*E-mail: zhangjunyan@licp.cas.cn; yingli@tamu.edu

Physical Characterization. The morphology, structure and compositions of MPCs were characterized by field emission scanning electron microscopy (FE-SEM, SU8020), transmission electron microscopy (TEM, TECNAI G2 TF20), X-ray diffraction (XRD, X' PERT P RO), X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi), Raman spectrometer (LabRAM ARAMIS, Horiba Jobin Yvon), N₂ adsorption-desorption tests (ASAP 2020), thermal gravimetric analysis (TGA, DSC200F3).

Fig. S1 Typical SEM images of freeze-dried VB-NaCl assemble.

Fig. S2 A) Magnified TEM image and B) STEM image of MPC-900.

Fig. S3 A) TEM, B) HRTEM and C) SEM images of VB-900. Insert of C) is XRD pattern of VB-900.

Fig. S4 TGA characterization of VB12 after lyophilization of water.

Fig. S5 TEM image of VB-Na-400.

Fig. S6 A) STEM and B) TEM images of VB-Na-500. Insert of B) is the XRD pattern of VB-Na-500.

Fig. S7 A) STEM image of VB-Na-500. B-F) The C, N, O, P and Co elemental-linear images of the orange line in A).

Fig. S8 TEM image of VB-Na-600.

Fig. S9 A) TEM and B) magnified TEM images of MPC-700.

Fig. S10 A) TEM and B) magnified TEM images of MPC-800.

Fig. S11 A) TEM and B) magnified TEM images of MPC-1000.

Sample	Feedstock used	Pyrolysis	BET surface	Pore volume
		temp. (°C)	area (m 2 g $^{-1}$)	$(cm^3 g^{-1})$
VB-900	Vitamin B ₁₂	900	24	0.04
VB-Na-500	Vitamin B ₁₂ +NaCl	500	201	0.22
VB-Na-600	Vitamin B ₁₂ +NaCl	600	228	0.28
MPC-700	Vitamin B ₁₂ +NaCl	700	356	0.67
MPC-800	Vitamin B ₁₂ +NaCl	800	626	1.28
MPC-900	Vitamin B ₁₂ +NaCl	900	779	1.86
MPC-1000	Vitamin B ₁₂ +NaCl	1000	1036	2.55

 Table S1 Summary of synthesis parameters and texture properties of samples.

Fig. S12 N₂ adsorption/desorption isotherms and VB-900, VB-Na-X and MPCs.

Fig. S13 A) TGA curve of VB-NaCl. B) SEM image and photograph (inset of B) of MPC-900 before removing of NaCl. This morphology indicates that MPC-900 is sealed inside in NaCl molten salts.

Fig. S14 Raman spectra of MPCs. It is observed that the value of ID/IG for MPCs decrease significantly when annealing temperature above 900 °C, suggesting that the graphitization degree is enhanced.

Fig. S15 XPS survey spectra of MPC-900.

	VB-900	MPC-700	MPC-800	MPC-900	MPC-1000
Total P (at.%)	1.21	1.47	1.38	1.31	0.98
P-C (at.%)		0.55	0.99	1.00	0.72
P-O (at.%)		0.92	0.39	0.31	0.26
Total N (at.%)	1.36	10.19	7.17	4.58	2.68
Pyridinic N (at.%)		4.87	3.68	1.94	0.88
Pyrrolic N (at.%)		2.49	1.10	0.50	0.22
Graphitic N (at.%)		1.84	1.87	1.80	1.32
Oxidized N (at.%)		0.99	0.52	0.34	0.26
Total Co (at.%)	0.59	1.17	1.03	0.74	0.45

Table S2 Summary of elemental contents for MPCs and VB-900.

Fig. S16 A) Co 2p XPS and B) XRD spectra of MPCs.

Fig. S17 CV curves of MPC-900 in Ar- and O_2 -saturated 0.1 M KOH aqueous solution with a scan rate of 50 mV s⁻¹.

Fig. S18 Chronoamperometric responses for ORR durability evaluation on MPC-900 electrode with the rotation rate of 1600 rpm at 0.76 V in O₂-saturated 0.1 M KOH solution.

Table	S3	Comparison	of ORR	catalytic	performance	s under	alkaline	conditions	between	MPC-
900 ar	id p	orous carbon	-based ca	atalysts in	previous rep	orts.				

Catalysts	CV peak potential	Half-wave potential	Electron transferred number	References
MPC-900	-0.16 V (vs. Ag/AgCl) 0.80 V (vs. RHE)	-0.11 V (vs. Ag/AgCl) 0.85 V (vs. RHE) (1600 rpm)	3.8	This work
N-doped porous carbon	-	0.87 V (vs. RHE)	3.97	Nat. Commun. 2014, 5, 4973
S-Doped	-0.34 V	-0.37 V	3.13	Angew. Chem. 2015,

Graphene	(vs. SCE)			127, 1908-1912
B-doped	-0.18 V	-0 175 V	4 16	Green Chem. 2015, 17,
Graphene	(Ag/AgCl)	0.175 V	4.10	3552-3560
P-doped	0.6 V	0.59 V	2.0	Adv. Mater. 2013, 25,
Graphene	(vs. RHE)	0.38 V	3.8	4932-4937
N.S-Codoped	-0.22 V			ChemSusChem 2015, 8,
Carbon	(vs.	$\sim -0.24 V$	3.4	1608-1617
Curbon	Ag/AgCl)			1000 1017
N,P,S-doped	-0.20 V			
porous	(vs.	-0.19 V	3.6	Sci. Rep. 2014, 4, 5130
carbon	Ag/AgCl)			
N,P-codoped		0.70 M (res. DHE)	2.07	J. Mater. Chem. A 2014,
carbon tube	-	0.79 V (VS. KHE)	3.97	2, 15448-15453
N, P-codoped	-0.22 V			Chem Eur I 2014 20
porous	(vs.	-0.19 V	3.96	2106 2112
carbon	Ag/AgCl)			3106-3112
N, P-codoped	_	0.82 V	3.8	ACS Catal. 2015, 5,
biocarbon	-	(vs. RHE)	5.0	920-927
N,P-codoped				
graphene/car	0.85 V (vs.	0.02 M		ACS Catal. 2015, 5,
bon	RHE)	0.83 V	-	4133-4142
nanosheets				
Porous N,P-	-0.17 V	-0.21 V	3.7	Appl. Catal. B: Environ.

doped carbon	(vs.	(vs. Ag/AgCl)		2017, 204, 394-402
	Ag/AgCl)			
NFe-doped	0.85 V	0.90 V	2.0	Angew. Chem. Int. Edit.
carbon	(RHE)		3.9	2017, 56, 1-6
N,Co-doped				Adv Energy Mater
porous	0.86 (RHE)	0.87	4	2017 7 1601070
carbon				2017, 7, 1601979
a C.N./C	-0.3 V (vs.	$\sim -0.29 \text{ V}$	3	Angew. Chem. Int. Edit.
g-03114/0	Ag/AgCl)	(1500 rpm)	5	2012, 51, 3892-3896
	-0.24 V	~-0.36 V		Angew Chem Int Edit
N-S-G	(vs.	(1(00,	3.6	2012 51 11406 11500
	Ag/AgCl)	(1600 rpm)		2012, 51, 11496-11500.
	0.81 V (vs.	0.80 V	2.05	J. Am. Chem. Soc. 2015,
Fe-N/C-800	RHE)	(1600 rpm)	3.95	137, 5555-5562
Meso/micro-	0.83 V	0.87 V	2.07	Nat. Commun. 2014, 5,
PoPD	(vs. RHE)	(1600 rpm)	5.97	4973
Co@Co ₃ O ₄	0.79 V (vs.	0.81 V	2.0	Energy Environ. Sci.
@C-CM	RHE)	(1600 rpm)	5.9	2015, 8, 568-576
NSC 800		0.74 V (vs. RHE)	4	Energy Environ. Sci.
NSC-800	-	(1600 rpm)	4	2014, 7, 4095-4103
NOSCa	0.75 V	~0.74 V	1	J. Am. Chem. Soc. 2014,
110505	(vs. RHE)	(1600 rpm)	4	136, 13554-13557
Fe-N/MCNs	0.82 V	0.83 V	4	Nanoscale 2015, 7,

	(vs.RHE)	(1600 rpm)	6247-6254
NMCS-3	-0.21 V (vs.	-0.23 V	Angew. Chem. Int. Edit.
	Ag/AgCl)	(1600 rpm)	2015, 54, 588-593
N-OMMC-G	-0.28 V (vs.	-0.23 V	Adv. Mater. 2013, 25,
	Ag/AgCl)	(1600 rpm)	6226-6231

Fig. S19 LSV curves of MPC-1000 in Ar- and CO₂-staurated 0.1 M KHCO₃ solution with scan rate of 5 mV s⁻¹.

Fig. S20 FE of MPC-1000 for H_2 , CO, and CH_4 at different applied potentials in CO₂-staurated 0.1 M KHCO₃.

Table S4 Comparison of CO2RR performances for CO production between MPC-1000 andreported carbon-based catalysts and noble metal.

Cotalvata	FE and $J_{\rm CO}^{\rm a}$	Overpotenti	Tafel slope	Deferences
Catalysis	$(mA cm^{-2})$	$al^{b}(V)$	(mV dec ⁻¹)	Kelefences
MPC-1000	62%, 3.1	-0.59	129	This work
N-CNT	80%,~	-0.94	160	Angew. Chem. 2015, 127,
	,			13905-13909
N-CNT	90% 5.0	-0 79	126	ChemSusChem 2016, 9, 1085-
		0.172		1089
MOF	76% ~1	-0.59	165	J. Am. Chem. Soc. 2015, 137,
WOI	7070, 1	0.57	105	14129-14135.
N-doped	85% 18	-0.47	_	Nano Lett 2016 16 466-470
Graphene	0070, 1.0	0.17		Tuno Lett. 2010, 10, 100 170.
N,S-doped	11.3% 0.26	-0.88	_	ChemSusChem 2016, 9, 606-
porous carbon	11.570, 0.20	0.88	-	616.
C ₃ N ₄ /MWCNT	60%, 0.5	-0.64	-	Chem. Eur. J. 2016, 22, 11991
N-CNT	80%, 1.5	-0.69	203	ACS Nano 2015, 9, 5364.

Ag (40 nm)	75%,-	-0.6		ACS Nano 2015, 9, 5364.
Annealed Cu	45%,-	-0.24	116	J. Am. Chem. Soc. 2012, 134,
i initialiti Cu				7231

^a Partial current density for CO at which the maximum FE is obtained;

^b Overpotential at which the maximum FE and partial current density for CO are obtained.