Supporting Information

Extremely High Power Factor in Seebeck Effects Based on New N-

Type Copper-Based Organic/Inorganic Hybrid C₆H₄NH₂CuBr₂I Film

with Metallic-Like Conductivity

Yuchun Liu^{1*}, Xiaolei Li^{2*}, Ling Xu¹, Jinbin Wang², Bin Hu^{1,3,4†}

1 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wu Han 430074, China

2 School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China

3 College of Science, Beijing Jiaotong University, Beijing 1000444, China

4 Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA

[†]Corresponding authors.

E-mail address: bhu@utk.edu.

Table S1. The crystallographic parameter for C ₆ H ₄ NH ₂ CuBr ₂ I						
(from Powder Rietveld Refinement) ^[1]						
Wavelength	elength 0.71073Å					
Temperature	298 K					
2-theta range	10~90°					
Step size	0.02°					
Number of point	4000					
Crystal system	hexagonal					
Space group	R3					
a (b)	3.963(3)Å					
c	9.698(5)Å					
α(β)	90°					
γ	120°					
R _{wp}	5.03%					
R _{exp}	1.02%					
R _p	3.83%					
GOF	4.20%					
Z	3					

1. The crystallographic parameter for $C_6H_4NH_2CuBr_2I$ Powder Rietveld Refinement

2. The thermal conductivity for C₆H₄NH₂CuBr₂I sample

The thermal conductivity (κ) can be determined according to the equation: $\kappa = \kappa_e + \kappa_L$, where κ_e and κ_L is the electronic contribution and lattice contribution, respectively. The electronic part of thermal conductivity κ_e was derived from the measured electrical conductivity according to the Wiedemann–Franz law: $\kappa_e = L\sigma T$, where L is the Lorenz number. Generally, Lorenz number could be estimated as $L_0 = \frac{\pi^2}{3} (\frac{k_B}{e})^2 \sim 2.45 \times 10^{-8} V^2/K^2$ for free electrons, which is suitable for the metals. For most thermoelectric materials, the true Lorenz number is in fact lower than L₀, depending on the reduced Fermi energy $\xi = E_F / k_B T$ and scattering parameter $r.^{[2-3]}$ Assuming the main carrier scattering mechanism around room temperature is the acoustic phonon scattering, r could be -1/2. Then the Lorenz number L can be given as the following:

$$L = \left(\frac{k_{\rm B}}{e}\right)^2 \left(\frac{3F_0(\xi)F_2(\xi) - 4F_1^2(\xi)}{F_0^2(\xi)}\right)$$

where $F_n(\xi)$ is defined as the Fermi integration

$$F_n(\xi) = \int_0^\infty \frac{\chi^n}{1 + e^{\chi - \xi}} d\chi$$

Based on the single band approximation,

$$n = 4\pi \left(\frac{2m^*k_BT}{h^2}\right)^{3/2} F_{1/2}(\xi)$$
$$S = \pm \left(\frac{2F_1(\xi)}{F_0(\xi)} - \xi\right)$$

L values were calculated to be ~ $1.5 \times 10^{-8} \text{ V}^2/\text{K}^2$. Since the electrical conductivity decrease with the temperature, the κ_{e} exhibits a decrease-to-increase trend with temperature, as shown in Figure 7(b). At room temperature, κ_{e} of C₆H₄NH₂CuBr₂I is about 1.6 W/m•K.

To analyses the lattice thermal conductivity κ_{L} , the Slack's model as empirical formula should be given by:

$$\kappa_{\rm L} = \mathrm{A} \frac{M\theta_{\rm D}^{3}\delta}{\gamma^2 n^{2/3}T}$$

Here *n* is the number of atoms in the primitive unit cell, δ^3 is the volume per atom, θ_D

is the Debye temperature, *M* is the average of the atoms in the crystal, γ is the Grüneisen parameter, and A is a collection of physical constants (A~3.1×10⁻⁶ if κ is in W/m·K, *M* in amu, and δ in Angstroms)^[4]. The Debye temperature is estimated by

$$\theta_{\rm D} \approx \frac{h}{k_{\rm B}} \left(\frac{v_{\rm m}}{\delta}\right)$$
, where $v_{\rm m}$ is the mean sound velocity. Ignoring affect of temperature

on the anharmonicity of the bond, the κ_L could be proportional to the T⁻¹.

Table S2. The value of parameter for lattice thermal conductivity calculation								
А	M (amu)	n	δ (Å)	$v_m (m/s)$	$\theta_{\rm D}({\rm K})$	γ		
~3.1×10-6	442.3	17	7.342	~1800 [5]	117.8	2.03 [6]		

- ^[1] X. Li, X. Zhong, Y. Hu, B. Li, et al. Phys. Chem. Lett., 2017, 8 (8), 1804-1809.
- ^[2] D. M. Rowe, C. M. Bhandari. *Modern Thermoelectrics*, Holt, Rinehart and Winston, 1993
- ^[3] W. T. Chiu, C. L. Chen, Y. Y. Chen, Scientific Reports, 2016, 6: 23143
- ^[4] D. T. Morelli, V. Jovovic, J. P. Heremans, *Phys. Rev. Lett.* 2008, 101, 035901.
- ^[5] J. Feng, APL Mater. 2014, 2, 081801.
- [6] J. Serrano, A. H. Romero, F. J. Manjón, R. Lauck, M. Cardona, A. Rubio, *Phys. Rev. B*, 2004, 69, 094306.