Supporting Information for

Smart hybridization of Sn₂Nb₂O₇/SnO₂@3D carbon nanocomposites with enhanced sodium storage performance through self-buffering effects

Pengbo Zhai,^a Jian Qin,^a Lichao Guo,^a Naiqin Zhao,^{ab} Chunsheng Shi,^a

En-Zuo Liu,^{ab} Fang He,^a Liying Ma,^a Jiajun Li^a and Chunnian He*^{ab}

^a School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072, China.

*E-mail: cnhe08@tju.edu.cn

^b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China

Fig. S1 Typical crystal structure of $Sn_2Nb_2O_7$ looking from the crystal direction of [101].

From Fig S1, we can clearly observe the arrangement of Sn, Nb, O atoms. The Sn atoms are surrounded by the green NbO₆ octahedra while the Nb and Sn distribute uniformly in the whole crystal. ^[S1] After the first discharge process, the crystal structure becomes amorphous because of the insertion of Na⁺ but the Sn, Nb and O will still maintain a uniform distribution.

Fig. S2 XRD pattern of SnO₂/3DC

Fig. S4 (a) Low-magnified SEM image of as-synthesized $SnO_2/Sn_2Nb_2O_7@3DC$; (b) EDX spectrum of red wire frame area in (a).

Fig. S5 Typical SEM images of (a, b) $SnO_2/3DC;$ (c, d) $Nb_2O_5/3DC$ and (e, f) $SnO_2/Nb_2O_5/3DC.$

Fig. S6 (a) XPS survey scan of $SnO_2/Sn_2Nb_2O_7@3DC$ hybrids; (b) High resolution XPS spectra for C.

From the Fig. S6 (a), we can see that the as-obtained $SnO_2/Sn_2Nb_2O_7@3DC$ hybrids only contains the elements of Sn, Nb, C and O. In Fig S6 (b), the binding energy peaks located at 284.6, 285.3, 286.3 and 289.2 eV are corresponding to the C-C, C-O, C=O, and O=C-O bonds, respectively. These bonds between C and O come from the residual oxycarbide groups. ^[S2]

Fig. S7 (a) Nitrogen adsorption-desorption isotherms and (b) DFT pore size distribution curve of $SnO_2/Sn_2Nb_2O_7@3DC$.

Fig. S8 Galvanostatic discharge/charge profiles of the $M-Sn_2Nb_2O_7/SnO_2@3DC$ electrode at various current densities of 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, and 10 A g⁻¹.

Table S1 Comparison of specific capacity and capacity retention at different current densities for different cycle numbers for $M-Sn_2Nb_2O_7/SnO_2@3DC$ electrode with other simple composites of $SnO_2/Carbon$ and $Nb_2O_5/Carbon$.

Sample	Current density (A g ⁻¹)	Specific capacity (mAh g ⁻¹)	Cycle number	Capacity retention (%)
M-Sn ₂ Nb ₂ O ₇ /SnO ₂ @3DC (this work)	0.1	295	100	97.7
	5.0	130	5000	96.3
G-Nb ₂ O ₅ nanosheets (ref S3)	0.05	230	30	76.7
	4.0	100	1000	90
SnO ₂ -PC (ref S4)	0.1	280.1	250	91.6
	1.6	100	1000	93.4
Nb ₂ O ₅ @C/rGO-50 (ref S5)	0.125	200	300	80
	1.25	130	500	86.7
Al ₂ O ₃ /SnO ₂ /CC (ref S6)	0.134	375	100	80
Nb ₂ O ₅ NCs/rGO (ref S7)	0.2	181	100	69.2
a-SnO ₂ /GA (ref S8)	0.05	380.2	100	91.7
m-Nb ₂ O ₅ -C (ref S9)	0.05	175	50	94.6
	0.1	100	300	67
SnO ₂ /GNS-SCCO ₂ (ref S10)	0.02	280	100	82

Fig. S9 (a, b) Typical SEM images of a M-Sn₂Nb₂O₇/SnO₂@3DC electrode after 100 electrochemical cycles; (c, d) Typical SEM images of a SnO₂/3DC electrode after 100 electrochemical cycles.

Fig. S10 (a) Cyclic voltammetry curves of $\text{SnO}_2@3\text{DC}$ electrode at different scan rate ranging from 0.1 to 1.0 mV⁻¹; (b) Plot of $\log(i)$ vs $\log(v)$ of anodic peaks (red spheres) and corresponding b-value determination (black lines) according to the power law ($i = av^b$). The b value is 0.73 indicating that the electrochemical reactions of $\text{SnO}_2@3\text{DC}$ electrode is mainly diffusion-controlled.

Fig. S11 Nyquist plots of $M-Sn_2Nb_2O_7/SnO_2@3DC$, $SnO_2@3DC$, $Nb_2O_5/3DC$ and mechanical mixing of $SnO_2/Nb_2O_5/3DC$ electrodes after the rate tests over the frequency range from 100 kHz to 10 mHz.

Fig. S12 Ex-situ XRD patterns obtained at different state of the first discharge-charge process to understand the structural change of $M-Sn_2Nb_2O_7/SnO_2@3DC$ electrode

Fig. S13 (a) HRTEM image of $M-Sn_2Nb_2O_7/SnO_2@3DC$ electrode material obtained at the discharged voltage of 0.005V; (b, c) charged voltage of 3.0V and (d) TEM image at the charged voltage of 3.0V.

Fig. S14 (a) TEM image and (b) HRTEM image of $M-Sn_2Nb_2O_7/SnO_2@3DC$ electrode after rate performance test.

Fig. S15 (a) STEM BF image and the corresponding elemental mapping images of (b) carbon; (c) tin; (d) niobium; (e) oxygen and (f) sodium.

References:

S1. Hosogi, Y.; Shimodaira, Y.; Kato, H.; Kobayashi, H.; Kudo, A., *Chem. Mater.*, 2008, 20 (4), 1299-1307.

S2. Chen, B.; Liu, E.; He, F.; Shi, C.; He, C.; Li, J.; Zhao, N., *Nano Energy*, 2016, 26, 541-549.

S3. Wang, L.; Bi, X.; Yang, S., Adv. Mater, 2016, 28 (35), 7672-9.

S4. Huang, Z.; Hou, H.; Zou, G.; Chen, J.; Zhang, Y.; Liao, H.; Li, S.; Ji, X., *Electrochim Acta* 2016, *214*, 156-164.

S5. Lim, E.; Jo, C.; Kim, M. S.; Kim, M. H.; Chun, J.; Kim, H.; Park, J.; Roh, K. C.; Kang, K.; Yoon, S.; Lee, J., *Adv. Funct. Mater.*, 2016, *26* (21), 3711-3719.

S6. Liu, Y.; Fang, X.; Ge, M.; Rong, J.; Shen, C.; Zhang, A.; Enaya, H. A.; Zhou, C., *Nano energy* 2015, *16*, 399-407.

S7. Yan, L.; Chen, G.; Sarker, S.; Richins, S.; Wang, H.; Xu, W.; Rui, X.; Luo, H.,

ACS Appl. Mat. Interfaces, 2016, 8 (34), 22213-22219.

S8. Fan, L.; Li, X.; Yan, B.; Feng, J.; Xiong, D.; Li, D.; Gu, L.; Wen, Y.; Lawes, S.; Sun, X., *Adv. Energy Mater.*, 2016, *6* (10), 1502057.

S9. Kim, H.; Lim, E.; Jo, C.; Yoon, G.; Hwang, J.; Jeong, S.; Lee, J.; Kang, K., *Nano Energy* 2015, *16*, 62-70.

S10. Patra, J.; Chen, H.-C.; Yang, C.-H.; Hsieh, C.-T.; Su, C.-Y.; Chang, J.-K., *Nano Energy* 2016, *28*, 124-134.