Electronic Supplementary Information

Novel biomolecule-assisted interlayer anion-controlled layered double hydroxide as an efficient sorbent for arsenate removal

Paulmanickam Koilraj^a, Keiko Sasaki^{a,*}, Kannan Srinivasan^b

^aDepartment of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan

^bInorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), GB Marg, Bhavnagar-364 002, India.

*Corresponding Author

Prof. Dr. Keiko Sasaki

Department of Earth Resources Engineering

Faculty of Engineering

Kyushu University

Fukuoka 819-0395

Japan

Tel./Fax. +81 92 802 3338

Email: <u>keikos@mine.kyushu-u.ac.jp</u>

Author Information

Paulmanickam Koilraj - koilrajp@gmail.com; koilraj@mine.kyushu-u.ac.jp

Fig. S1. Change in the degree of crystallinity of MgAl-LDHs with synthesis temperature.

The degree of crystallinity was calculated by the addition of 20 wt.% SiO_2 by the internal standard method. The phase fraction of each component was calculated from the PXRD patterns highest intensity peak area of SiO_2 and LDH phases as shown in the following equation:¹

$$Phase fraction of LDH (F_{LDH}) = \frac{Area of LDH_{(100\% intensity peak)}}{(Area of LDH_{(100\% intensity peak)} + Area of standard_{(100\% intensity peak)})}$$
(i)

The degree of crystallinity of the samples were calculated by the following equation:²

Degree of Crystallinity (%) =
$$F_{LDH} X \frac{F_{S(actual)}}{F_{S}} \left(\frac{1}{1 - F_{S(actual)}}\right) X 100$$
(ii)

Where, F_{LDH} and F_s are the phase fraction of LDH and standard respectively, and $F_{s (actual)}$ is the originally added fraction of internal standard.

References

- M. H. A. Rahaman, M. U. Khandaker, Z. R. Khan, M. Z. Kufian, I. S. Noor and A. K. Arof, *Phys. Chem. Chem. Phys.*, 2014, 16, 11527-11537.
- R. Snellings, L. Machiels, G. Mertens and J. Elsen, *Geologica Belgica*, 2010, 13, 183-196.

Fig. S2 LC-MS spectra of supernatants obtained after LDH synthesis at different temperatures.

Scheme S1. Thermal decomposition of amino acid during hydrothermal treatment at higher temperatures.¹

Reference

1. J. J. Zwinselman, N. M. M. Nibbering, J. van der Greef and M. C. T. N. De Brauw, *Org. Mass Spectrom.*, 1983, **18**, 525-529.

Fig. S3 PXRD peak fitting of MgAl LDHs synthesized at various temperatures (a-g) and (h) all

of the LDHs.

Fig. S4 FT-IR spectra of MgAl-LDHs synthesized at various temperatures.

Fig. S5 SEM images of MgAl-LDHs synthesized at various temperatures (scale bar = $2 \mu m$).

Fig. S6 Nitrogen adsorption-desorption isotherms of MgAl-LDHs synthesized at various

temperatures.

Fig. S7 Kinetic linear fittings of Ho's pseudo-second order model.

Fig. S8 (a) PXRD patterns of (a) MgAl-LDH-100 and (b) MgAl-LDH-100 (2:1) after sorption of

arsenate at different concentrations.

Fig. S9 The d_{003} -spacing of MgAl-LDH-100 and MgAl-LDH-100 (2:1) after sorption of arsenate

at different concentrations.

Fig. S10 (a) FT-IR spectra of MgAl-LDH-100 (2:1) after sorption of arsenate at different

concentrations (b) and their expanded regions.

Fig. S11 XPS survey spectra of MgAl-LDH-90 before and after adsorption of 2.0 mM arsenate.