Electronic Supplementary Information

Sb nanoparticles uniformly dispersed in 1-D N-doped porous carbon as anodes for Liion and Na-ion batteries

Qianqian Yang, Jie zhou, Genqiang Zhang, Cong Guo, Meng Li, Yongchun Zhu and Yitai Qian*

Hefei National Laboratory for Physical Science at Microscale, Department of Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, 96 JinZhai Road, 230026, Hefei, China.

*Corresponding Author Yitai Qian, E-mail: ytqian@ustc.edu.cn Yongchun Zhu, E-mail: ychzhu@ustc.edu.cn

Fig. S1. (a) TGA curve of the Sb/NPC composite annealed in air from room temperature to 800 °C, (b) XRD patterns of the Sb/NPC composite after anneal in air.

Fig. S2. SEM image (a) and Infrared (IR) spectra (b) of Ni-NTA precursor.

Fig. S3. XRD patterns (a), SEM and TEM images (b,c,d) of Ni/NPC.

Fig. S4. The discharge/charge voltage profiles of NPC.

Figure S5. Cycling performances of the Sb/NPC composite in Li-ion battery (electrolyte : 1 M LiPF₆ dissolved in ethylene carbonate/dimethyl carbonate (EC/DMC = 1/1, V/V) with 5 % FEC additive) and (electrolyte : Na-ion battery 1.0 M NaClO₄ in an ethylene carbonate/dimethyl carbonate (EC/DMC = 1/1, V/V) with 5 % FEC additive).

Table	S1.	Comparison	of the	performances	in	this	work	with	previously	reported	Sb/C
compo	site t	for Li-ion batt	teries.								

Sb-based anodes	Reversible	Current	Cycle	Ref.
	capacity	density	number	
	(mAh g ⁻¹)	(mA g ⁻¹)	(cycles)	
Sb/C composites	466.2	100	200	[1]
nanostructured Sb/carbon	315.9	100	100	[2]
composite fibers				
Sb/C polyhedra composite	565	200	100	[7]
RGO-Sb _{TF} -Ni	424.1	100	50	[8]
hollow Sb@C	405	1000	300	[9]
yolk-shell spheres				
graphene@NiSb/	340	200	50	[10]
Sb@nickel foam				
Sb/graphene	515	100	50	[11]
composites				
1-D Sb/NPC	556	200	100	This work

Sb-based anodes	Reversible	Current	Cycle	Ref.
	capacity	density	number	
	(mAh g ⁻¹)	(mA g ⁻¹)	(cycles)	
Sb–C nanofibers	446	200	400	[3]
Sb/C fibers	422	350	300	[4]
Sb NPs anchored on carbon	542.5	100	100	[5]
nanofibers				
Sb-carbon-graphene fibrous	274	100	100	[6]
composite				
hollow Sb@C	280	1000	200	[9]
yolk-shell spheres				
graphene@NiSb/	305	300	100	[10]
Sb@nickel foam				
Sb @C coaxial nanotubes	407	100	240	[12]
spherical nano-Sb@C	385	100	500	[13]
composite				
Sb/J-SP-α	280	300	160	[14]
1-D Sb/NPC	400.9	100	100	This work

Table S2. Comparison of the performances in this work with previously reported Sb/C

 composite for Na-ion batteries.

References

- 1. Y. Cheng, Z. Yi, C. Wang, L. Wang, Y. Wu and L. Wang, *Chemistry–An Asian Journal*, 2016, **11**, 2173-2180.
- H. Lv, S. Qiu, G. Lu, Y. Fu, X. Li, C. Hu and J. Liu, *Electrochimica Acta*, 2015, 151, 214-221.
- 3. L. Wu, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, X. Ai, H. Yang and Y. Cao, *Energy & Environmental Science*, 2014, 7, 323-328.
- Y. Zhu, X. Han, Y. Xu, Y. Liu, S. Zheng, K. Xu, L. Hu and C. Wang, *ACS nano*, 2013, 7, 6378-6386.
- H. Hou, M. Jing, Y. Yang, Y. Zhang, W. Song, X. Yang, J. Chen, Q. Chen and X. Ji, Journal of Power Sources, 2015, 284, 227-235.
- 6. K. Li, D. Su, H. Liu and G. Wang, *Electrochimica Acta*, 2015, 177, 304-309.
- Z. Yi, Q. Han, P. Zan, Y. Wu, Y. Cheng and L. Wang, *Journal of Power Sources*, 2016, 331, 16-21.
- Z. Yi, Q. Han, Y. Cheng, F. Wang, Y. Wu and L. Wang, *Electrochimica Acta*, 2016, 190, 804-810.
- J. Liu, L. Yu, C. Wu, Y. Wen, K. Yin, F.-K. Chiang, R. Hu, J. Liu, L. Sun and L. Gu, Nano Letters, 2017, 17, 2034-2042.
- Y. L. Ding, C. Wu, P. Kopold, P. A. van Aken, J. Maier and Y. Yu, *Small*, 2015, 11, 6026-6035.
- 11. Y. Yi, H.-W. Shim, S.-D. Seo, M. A. Dar and D.-W. Kim, *Materials Research Bulletin*, 2016, **76**, 338-343.
- 12. Z. Liu, X.-Y. Yu, X. W. D. Lou and U. Paik, *Energy & Environmental Science*, 2016, **9**, 2314-2318.
- N. Zhang, Y. Liu, Y. Lu, X. Han, F. Cheng and J. Chen, *Nano Research*, 2015, 8, 3384-3393.
- X. Zhao, S. A. Vail, Y. Lu, J. Song, W. Pan, D. R. Evans and J.-J. Lee, ACS applied materials & interfaces, 2016, 8, 13871-13878.