Rational Design of N-doped Carbon Nanobox supported

Fe/Fe₂N/Fe₃C nanoparticles as Efficient Oxygen Reduction

Catalyst for Zn-air Batteries

Lei Cao, ^a Zhenhuan Li, ^a * Yu Gu, ^b Daohao Li, ^b Kunmei Su ^a, Dongjiang Yang, ^{c*} Bowen Cheng ^a *

- a State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, 300160 Tianjin, China
- b School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
- c Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan, Brisbane, Queensland 4111, Australia.

Fig. S1 (a) SEM images and (b) corresponding elemental mapping images of Fe-N-CNBs-600.

Fig. S2 Schematic illustration of four types of nitrogen in Fe-N-CNBs.

Fig. S3 XPS N 1s spectrum of Fe-N-CNBs with different calcination temperature.

Fig. S4 (a) N_2 adsorption/desorption isotherm curves and (b) corresponding pore size distribution curves of CNBs, Fe-CNBs-600, N-CNBs-600 and Fe-N-CNBs-500, Fe-N-CNBs-600 and Fe-N-CNBs-700.

Fig. S5 CV curves for the Fe-N-CNBs electrodes with different calcination temperature with O_2 and N_2 -saturated in 0.1 M of KOH.

Fig. S6 CV curves for CNBs, Fe-CNBs-600, N-CNBs-600 and Fe-N-CNBs-600 electrodes with N_2 and O_2 -saturated in 0.1 M KOH solution.

Fig. S7 XRD spectra of N -CNBs-600 and Fe -CNBs-600.

Fig. S8 LSV curves for the Fe-N-CNBs electrodes with different calcination temperature at 1600 rpm.

Fig. S9 Electrochemical impedance spectroscopy (EIS) curves plots of the CNBs, Fe-CNBs-600, N-CNBs-600, Fe-N-CNBs-500, Fe-N-CNBs-600 and Fe-N-CNBs-700 electrodes in 0.1M KOH solution.

Fig. S10 LSV curves at various rotation speeds of (a) CNBs, (b) Pt/c, (c) Fe-CNBs-600, (d) N-CNBs-600, (e) Fe-N-CNBs-500 and (f) Fe-N-CNBs-700 in O₂-saturated 0.1 M KOH solution.

Fig. S11 (a) RRDE voltammograms, (b) plots of H_2O_2 yield and number of electron transfer of Fe-N-CNBs-600 at the rotation speed of 1600 rpm.

Fig. S12 The open circuit voltage measurements of ZAB with Fe-N-CNBs-600 and Pt/C as the cathode catalysts.

Sample	C [at%]	N [at%]	O [at%]	Fe [at%]
CNBs	96.10	/	3.90	/
N-CNBs-600	94.34	2.35	3.31	/
Fe-N- CNBs -500	90.02	5.50	4.14	0.34
Fe-N- CNBs -600	90.24	3.55	3.92	0.29
Fe-N- CNBs -700	92.10	4.35	3.40	0.14

Table S1 Elemental composition of CNBs, N-CNBs-600, Fe-N-CNBs-500, Fe-N-CNBs-600 and Fe-N-CNBs-700 catalysts.

Table S2 Textural properties of CNBs, N-CNBs-600, Fe-N-CNBs-500, Fe-N-CNBs-

600 and Fe-N-CNBs-700 catalysts.

Sample	BET surface	BET surface Pore volume	
	area (m²/g)	(ml/g)	diameter (nm)
CNBs	216.38	0.43	8.03
N-CNBs-600	282.64	0.57	8.10
Fe-N- CNBs -500	231.88	0.46	7.97
Fe-N- CNBs -600	353.98	0.58	6.62
Fe-N- CNBs-700	295.95	0.58	7.85

Sample	Catalyst loading (mg/cm ²)	Onset potential (V vs. RHE)	Half potential (V vs. RHE)	Reference
Fe-N-CNBs-600	0.429	1.03	0.875	This work
Fe ₃ C@NCNF-900	0.120	-0.035 (vs. Ag/AgCl)	-0.121 (vs. Ag/AgCl)	1
Fe ₃ C/NG-800	0.400	1.03	0.86	2
N-doped Fe/ Fe ₃ C@C/RGO	0.556	1.00	0.93	3
Fe-N/C-800	0.796	0.98	/	4
Fe-N/C-800	0.100	0.923	0.809	5
Fe-N-PGC-800	0.305	-0.017 (vs. Ag/AgCl)	-0.15 (vs. Ag/AgCl)	6
FP-Fe-TA-N-850	0.300	0.98	/	7
Fe-N-CNFs	0.600	0.93	0.81	8
NG-900-4	0.300	0.885	0.752	9

Table S3 Comparison of ORR performance in 0.1 M KOH electrolyte of Fe-N-CNBs-600 and with literature values.

References

- G. Ren, X. Lu, Y. Li, Y. Zhu, L. Dai and L. Jiang, ACS Appl. Mater. Interfaces, 2016, 8, 4118-4125.
- (2) M. Xiao, J. Zhu, L. Feng, C. Liu and W. Xing, Adv. Mater., 2015, 27, 2521-2527.
- (3) Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui and J. Chen, Adv. Energy Mater., 2014,
 4, 1220-1225.
- (4) W. Niu, L. Li, X. Liu, N. Wang, J. Liu, W. Zhou, Z. Tang and S. Chen, J. Am. Chem. Soc., 2015, 137, 5555-5562.
- (5) L. Lin, Q. Zhu and A. W. Xu, J. Am. Chem. Soc., 2014, 136, 11027-11033.
- (6) X. Zhang, R. R. Liu, Y. P. Zang, G. Q. Liu, S. W. Liu, G. Z. Wang, Y. X. Zhang,
 H. M. Zhang and H. J. Zhao, *Inorg. Chem. Front.*, 2016, 3, 910-918.
- (7) J. Wei, Y. Liang, Y. Hu, B. Kong, G. P. Simon, J. Zhang, S. P. Jiang and H. Wang, Angew. Chem. Int. Ed., 2016, 55, 1355–1359.
- (8) Z. Y. Wu, X. X. Xu, B. C. Hu, H. W. Liang, Y. Lin, L. F. Chen and S. H. Yu, Angew. Chem., Int. Ed., 2015, 54, 8179-8183.
- (9) X. Y. Cui, S. B. Yang, X. X. Yan, J. G. Leng, S. Shuang, P. M. Ajayan and Z. J. Zhang, Adv. Funct. Mater., 2016, 26, 5708-5717.