Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information:

Lithium Metal Protected by Atomic Layer Deposition Metal Oxide for High Performance Anodes

Figure S1. SEM images of Li surface in symmetric cell after 50 charge-discharge cycles. (a) Pristine Li (9,000 magnification). (b) Magnified view of region in red box in Figure S1a (20,000 magnification). (c) 4nm Al₂O₃ coated Li (9,000 magnification). (d) Magnified view of region in red box in Figure S1c (20,000 magnification).

	Concentration (at%)	
Species	10×Al ₂ O ₃ Li	20×Al ₂ O ₃ Li
Al	2.1	2.9
Li	44.0	41.7
Ο	39.2	35.3
С	14.5	19.5
F	0.1	0.6

Table S1: Atomic composition of Li coated with 10 and 20 ALD Al₂O₃ cycles prior to electrochemical cycling as measured by XPS.

Figure S2. High-resolution XPS spectra for the (a) C 1s and (b) O 1s core levels. The bottom spectra show the surface speciation for the pristine ALD-coated Li $(20xAl_2O_3)$, and the top spectra show the change in surface speciation after one discharge-charge cycle.

Figure S3. XPS spectra of bare Li and $20 \times Al_2O_3$ Li after 10 stripping/plating cycles. Signals taken from the center of the electrodes. (a) In the range of 0-1100 eV after 10 stripping/plating cycles. (b) In the range of 0-280 eV after 10 stripping/plating cycles.

	Concer	Concentration (at%)	
Species	Uncoated Li	$20 imes Al_2O_3$ Li	
Al	0.0	1.1	
Li	36.6	31.4	
0	34.9	36.3	
С	26.7	30.1	
F	1.7	1.1	

Table S2 Elemental concentration for uncoated Li and 20 \times Al₂O₃ coated Li after 10 discharge-charge cycles by XPS

Figure S4. XPS of bare Li and $20 \times Al_2O_3$ Li after 50 stripping/plating cycles. Signals taken from the center of the electrodes in the range of: (a) 0-1100 eV after 50 stripping/plating cycles; (b) 0-280 eV after 50 stripping/plating cycles.

Species	Concentration (at%)	
	Uncoated Li	$20\times Al_2O_3Li$
Al	0.0	0.0
Li	32.0	31.2
0	35.7	36.8
С	31.1	30.9
F	1.1	0.9

Table S3 Concentration of elements for uncoated Li and $20 \times Al_2O_3$ coated Li after 50 discharge-charge cycles by XPS

Figure S5. (a) Symmetric cell tests in 10 μ L carbonate electrolyte at current density of 1 mA/cm² with capacity of 1mAh/cm². (b-d) Detailed voltage profile in different time range. (e) Symmetric cell tests using 5 μ L carbonate electrolyte at current density of 1 mA/cm² with capacity of 1mAh/cm².

Figure S6. EIS of symmetric cells with 5 µL carbonate electrolyte before cycling (fresh cells).

Fitting EIS data: the slope of the incline line at low frequency is the Warburg coefficient (σ). The smaller of Warburg coefficient value, the steeper of the slope.¹ The coefficient can be expressed below,²

$$\sigma = \frac{RT}{\sqrt{2D_{\rm Li}}n^2F^2SC}$$

where R is the ideal gas constant, T is the thermodynamic temperature, F is the Faraday constant, n is the valence, D_{Li} is the diffusion coefficient of the Li ions in the cathode, C is the concentration of the Li⁺ ions and S denotes the contacting area between the active material particles and the electrolyte. The slope of the uncoated Li-Cu is smaller than the Al₂O₃ coated Li-Cu cells, which means that the σ for uncoated Li is smaller, thus lithium ion conductivity is better with a larger D_{Li} .

Calculation of Li thickness: the amount of Li stripped and plated when a Li/Li symmetric cell is discharged and charged at 1 mA/cm² to a capacity of 1 mAh/cm²

In the discharge process, the amount of Li stripped from the anode is

$$\frac{1mAh/cm2 * 6.94g/mol * 6.24e18/Coul * 3.6Coul/mAh}{0.53g/cm3 * 6.022e23/mol} = 4.88\mu m$$

In the charge process, the amount of Li plated back to the anode side is also:

$$\frac{1mAh/cm2 * 6.94g/mol * 6.24e18/Coul * 3.6Coul/mAh}{0.53g/cm3 * 6.022e23/mol} = 4.88\mu m$$

Therefore, Li moved in the discharge and the charge process is both $\sim 5 \ \mu m$.

References

1. G. Zhou, D.-W. Wang, L.-C. Yin, N. Li, F. Li and H.-M. Cheng, ACS Nano, 2012, 6, 3214-3223.

2. N. Takami, A. Satoh, M. Hara and T. Ohsaki, J. Electrochem. Soc., 1995, 142, 371-379.