Novel catalytic route for hydrogenation-dehydrogenation of $2LiH+MgB_2$ via in-situ formed core-shell Li_xTiO_2 nanoparticles⁺

J.A. Puszkiel,^{*^{a,d}} M.V. Castro Riglos,^b J.M. Ramallo López,^c M. Mizrahi,^c F. Karimi,^d A. Santoru,^d A. Hoell,^e F.C. Gennari,^a P. Arneodo Larochette,^a C. Pistidda,^d T. Klassen,^{d,f} J.M. Bellosta von Colbe^d and M. Dornheim^d

- E-mail: julianpuszkiel1979@gmail.com; Tel: +54 0294 445100 (5556) ^{b.} Department of Metalphysics, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche, Av. Bustillo km 9500 S.C. de Bariloche, Argentina.
- ^c Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, INIFTA (CCT La Plata – CONICET, UNLP), Diagonal 113 y Calle 64, La Plata, Argentina

^{a.} Department of Physicochemistry of Materials, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche, Av. Bustillo km 9500 S.C. de Bariloche, Argentina.

Argentina. ^{d.} Department of Nanotechnology, Institute of Materials Research, Helmholtz–Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany.

^{e.} Institute for nanospectroscopy, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.

^{f.} Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany †Electronic Supplementary Information (ESI) available: See DOI: 10.1039/x0xx00000x

Electronic Supplementary information

Fig.S1 PXD for as-purchased TiO₂ and weight fractions of anatase and rutile calculated by: **A** quantitative method [32] and **B** Rietveld method.

Fig.S2 PXD for 0.5LiH+TiO₂ (a) after MM and (b) after MM+heating up to 400 $^{\circ}$ C in Ar atmosphere.

Fig.S3 MS for the 2LM material from about 30 $^{\circ}\text{C}$ to 400 $^{\circ}\text{C}.$

Fig.S5 XANES spectra at the Ti K edge. **Comment:** The references $0.5\text{LiH}+\text{TiO}_2$ after milling and after heating are composed of mixtures of Li_xTiO_2 compounds with x = 0.07, 0.5 and x = 0.59 and 1, respectively (ESI: Fig. S2 PXD of the $0.5\text{LiH}+\text{TiO}_2$ references). All the materials present Ti absorption edge positions similar to Ti_2O_3 . However, the shape of the spectrum of Ti_2O_3 differs from those of the 2LM5TiO₂ material at different stages (Fig. S5 (a-e)). It can be noticed that the spectrum of the 2LM5TiO₂ after milling (Fig. S5 (a)) is alike to the one of the reference $0.5\text{LiH}+\text{TiO}_2$ after milling. The spectra of the 2LM5TiO₂ after heating and hydrogen interaction (Fig. S5 (b – e)) are similar to the one of the reference $0.5\text{LiH}+\text{TiO}_2$ after heating.

Fig.S6 HR–TEM, FFT and simulation for 2LM5TiO₂: **A** After milling, **B** After heating, **C** After first dehydrogenation, **D** After second hydrogenation and **E** After tenth dehydrogenation. $Li_{0.59}TiO_2$ belongs to the space group *Imma*. LiTiO₂ belongs either to the tetragonal crystalographic system, space group: $I4_1/amd$ or cubic system, space group *Fm*-3*m*. It is not possible to distinguish to which system the LiTiO₂ belongs to, since for [001] zone axis condition both structures are practically identical.

Fig.S7 Scattering curve sets of two ASAXS experiments below the Ti-K absorption edge: **A** after milling and **B** after first dehydrogenation. The energy dependence of the scattering curve shapes identify Ti enrichements or depletions with respect to their environment (resonant structures).

Fig.S8 HR-TEM for complete core-shell nanoparticles of the Li_xTiO_2 phases corresponding to Fig. 3 of the manuscript: **B** after heating, **C** 1st and **D** 10th dehydrogenation. General FFT was calculated in each case and compared to simulated ring diffraction patterns (DPs).

Fig.S9 PXD for 2LM5TiO₂ during the **A** 2^{nd} hydrogenation at 400 °C under 50 bar H₂ and **B** 2^{nd} dehydrogenation at 400 °C under 3 bar H₂.

Fig.S10 Additional characterization of the nanosized LixTiO₂ phases in 2LM5TiO₂ material during hydrogenation and dehydrogenation by means of HR-TEM (Fig. 4 of the manuscript).

Fig.S11 A TG curves and **B** HP-DSC and TG measurements for (a) $2\text{LiBH}_4 + \text{MgH}_2$ milled for 2 h in P6 mill device, (b) 2LMSTiO_2 during the second dehydrogenation at point 2: the sample is composed of free Mg, LiBH_4 and the Li_xTiO_2 additive (Fig. 4 of the manuscript). **Comment:** The TG curve (b) presents a mass gain owing to the re-hydrogenation of free Mg (see Fig.S9 PXD B(b)) since the dehydrogenation was performed at 3 bar of hydrogen overpressure and at 250 °C the equilibrium pressure for hydrogenation is about 1 bar. Then as the temperature increases, the formed MgH₂ decomposes.

Fig.S12 A PXD of the 2LM5TiO₂ (a) taken at the second point of the dehydrogenation process (Fig. 4 of the manuscript and Fig.S9 B PXD (b)) and (b) heated up to 200 $^{\circ}$ C in vacuum atmosphere. **B** FT-IR of gas phases coming from heating up the 2LM5TiO₂ taken at the second point of the dehydrogenation process (Fig. 4 of the manuscript and Fig.S9 B PXD (b)) at: (a) 100 $^{\circ}$ C, (b) 150 $^{\circ}$ C, (c) 200 $^{\circ}$ C.

Fig.S13 A Dehydrogenation pressure composition isotherms (PCIs) for $2LM5TiO_2$. **B** PXD of a sample subtracted during the second plateau of the PCI at 425 °C. **C** PXD of a sample subtracted after the PCI at 400 °C. The dehydrogenation PCIs measurements took between 45 to 57 hours.

Fig. S14 Kinetic hydrogenation (50 bar) and dehydrogenation (3 bar) behavior at 400 °C for: A and B 2LM, C and D 2LM5TiO₂, E and F 2LM1TiO₂.

Fig. S15 A PXD and B Raman Spectroscopy of dehydrogenated (a) 2LM1TiO₂ and (b) 2LM after 10th absorption-desorption cycles.

Fig. S16 $(t/t0.5)_{experimental}$ vs. $(t/t0.5)_{theoretical}$ plots for **A** 2LM and **B** 2LM1TiO₂ at the 2nd hydrogenation. The method assumes that the most suitable reaction model provides a linear fitting with R² close to 1 and a straight line through the origin with a slope of about 1.

f = 1 - (exp(-k*t)^n)				n =	1								Fig. 7 A (a)	
Abs 2LM	k	k (1/s) Error		R^2	2	k^-1 (s)		w	rt%H	E	Irror	k	x hydrogen capacty Abs. (wt. % H.s^-1)	Error
1	0.	0.00607 1.00E-05		0.985	8584 164.744645		7446458		9.1		0.6		5.524E-02	3.64E-03
2	0	0.0422 2.50E-04		0.986	0.98606 23		9668246		8.3		0.4		3.503E-01	1.69E-02
3	0.	0.04765 3.40E-04		0.97	0.9785 20.		8635887		7.9		0.4		3.764E-01	1.91E-02
4	0.	0.04438 3.10E-04		0.978	362	22.53267237			7.5		0.4		3.329E-01	1.78E-02
5	0.	0.03502 2.80E-04		0.959	954	28.55511136			7.8		0.4		2.732E-01	1.40E-02
6	0.	0.03523 2.80E-04		0.956	63	28.38489923			7.8		0.4		2.748E-01	1.41E-02
7	0.	03597	3597 3.10E-04		262	27.80094523			8.3		0.4		2.986E-01	1.44E-02
8	0.	03902	02 3.30E-04		0.9573 25.		2788314		8.7		0.4		3.395E-01	1.56E-02
9	().045	3.20E-04	0.975	585	22.2	2222222		8.4		0.4		3.780E-01	1.80E-02
10	0.	04495	3.10E-04	0.977	771	22.2	4694105		8.7		0.4		3.911E-01	1.80E-02
					-									
		1 = 1 - (ex	<u>p(-k ()^n)</u>	n =	<u> </u>								Fig.7 A (b)	
Abs 2LM1	I TíO2	k (1/s)	Error		R^2		k^-1 (s)	wt %	Н	Erro	r	k x hydrogen capacty Abs. (wt. % H.s^-1)	Error
1		0.0003	3 6.62E-	07 0	.9911	1	3030.303	303		10.1		0.4	3.333E-03	1.320E-04
2		0.0038	3 3.00E-	05 0	.9799	92	261.0966	057		9.9		0.3	3.792E-02	1.149E-03
3		0.0041	1 4.00E-	05 0	.9729	2	243.3090	024		10.1		0.3	4.151E-02	1.233E-03
4		0.00396 3.00		05 0	0.98667		252.5252525			10.1		0.3	4.000E-02	1.188E-03
5		0.00438 4.		05 0	i 0.97338		3 228.3105023			10		0.3	4.380E-02	1.314E-03
6	0.00446		6 5.00E-	-05 0.9713		4 224.215246		466		9.9		0.3	4.415E-02	1.338E-03
7	0.00435		5 4.00E-	05 0	0.97087		229.8850575			10		0.3	4.350E-02	1.305E-03
8		0.00421 4		05 0	.9714	6	237.5296	912		10		0.3	4.210E-02	1.263E-03
9		0.0042	4.00E-	05 0	.9703	34 238.09523		381		10		0.3	4.200E-02	1.260E-03
10		0.00412	2 4.00E-	05 0	.9680	2 242.7184466		466		10		0.3	4.120E-02	1.236E-03

Table S1 Fitting parameters for the JMA model for the hydrogenation kinetic curves during cycling at 400 $^{\circ}$ C and 50 bar of H₂: 2LM and 2LM1TiO₂. **Note:** The unit of the rate constant is (1/s). For the sake of clarity in the inset plot of Fig.7 the time axis is expressed in unit of (minutes).

2LM	Fitting		First	Step		Second Step			
Cycle	R2	1	k1 (1/s)	error	n	12	k2 (1/s)	error	t0 (s)
1	0.9993	0.25	1.28E-02	1.50E-04	1	0.82	4.70E-04	5.90E-07	7100
2	0.99751	0.25	1.34E-02	3.20E-04	1	0.93	3.80E-04	7.62E-07	9300
3	0.99796	0.27	1.07E-02	1.90E-04	1	0.90	3.70E-04	6.81E-07	9900
4	0.99778	0.27	9.20E-03	1.60E-04	1	0.90	3.30E-04	5.99E-07	10400
5	0.9974	0.28	9.61E-03	1.80E-04	1	0.86	3.80E-04	8.04E-07	10300
6	0.99734	0.28	8.86E-03	1.60E-04	1	0.86	3.80E-04	8.33E-07	10300
7	0.99795	0.28	9.83E-03	1.70E-04	1	0.83	4.50E-04	9.19E-07	8900
8	0.99758	0.27	9.63E-03	1.80E-04	1	0.85	4.60E-04	1.02E-06	8300
9	0.99829	0.28	9.44E-03	1.30E-04	1	0.83	4.80E-04	9.20E-07	8200
10	0.99725	0.27	1.01E-02	2.00E-04	1	0.98	4.40E-04	9.71E-07	8200
2LM1TiO2	Fitting		First	Step			Secon	d Step	
2LM1TiO2 Cycle	Fitting R2	1	First k1 (1/s)	Step error	n	2	Secon k2 (1/s)	<mark>d Step</mark> error	t0 (s)
2LM1TiO2 Cycle	Fitting R2 0.99871	l1 0.26	First k1 (1/s) 2.43E-02	Step error 6.00E-04	n 1	I2 0.74	Secon k2 (1/s) 3.03E-03	d Step error 1.00E-05	t0 (s) 1430
2LM1TiO2 Cycle 1 2	Fitting R2 0.99871 0.99901	l1 0.26 0.26	First k1 (1/s) 2.43E-02 2.36E-02	Step error 6.00E-04 4.40E-04	n 1 1	i2 0.74 0.74	Secon k2 (1/s) 3.03E-03 3.18E-03	d Step error 1.00E-05 9.83E-06	t0 (s) 1430 1420
2LM1TiO2 Cycle 1 2 3	Fitting R2 0.99871 0.99901 0.99884	l1 0.26 0.26 0.26	First k1 (1/s) 2.43E-02 2.36E-02 2.17E-02	Step error 6.00E-04 4.40E-04 4.20E-04	n 1 1 1 1	12 0.74 0.74 0.75	Secon k2 (1/s) 3.03E-03 3.18E-03 3.11E-03	d Step error 1.00E-05 9.83E-06 1.00E-05	t0 (s) 1430 1420 1440
2LM1TiO2 Cycle 1 2 3 4	Fitting R2 0.99871 0.99901 0.99884 0.99848	11 0.26 0.26 0.26 0.26	First k1 (1/s) 2.43E-02 2.36E-02 2.17E-02 2.13E-02	Step error 6.00E-04 4.40E-04 4.20E-04 4.80E-04	n 1 1 1 1	12 0.74 0.74 0.75 0.75	Secon k2 (1/s) 3.03E-03 3.18E-03 3.11E-03 3.11E-03	d Step error 1.00E-05 9.83E-06 1.00E-05 1.00E-05	t0 (s) 1430 1420 1440 1440
2LM1TiO2 Cycle 1 2 3 4 5	Fitting R2 0.99871 0.99901 0.99884 0.99848 0.99897	11 0.26 0.26 0.26 0.26 0.26 0.26	First k1 (1/s) 2.43E-02 2.36E-02 2.17E-02 2.13E-02 2.10E-02	Step error 6.00E-04 4.40E-04 4.20E-04 4.80E-04 3.90E-04	n 1 1 1 1 1 1	12 0.74 0.74 0.75 0.75 0.75 0.74	Secon k2 (1/s) 3.03E-03 3.18E-03 3.11E-03 3.11E-03 3.05E-03	d Step error 1.00E-05 9.83E-06 1.00E-05 1.00E-05 9.35E-06	t0 (s) 1430 1420 1440 1440 1450
2LM1TiO2 Cycle 1 2 3 4 5 6	Fitting R2 0.99871 0.99901 0.99884 0.99848 0.99897 0.99916	11 0.26 0.26 0.26 0.26 0.26 0.26 0.26	First k1 (1/s) 2.43E-02 2.36E-02 2.17E-02 2.13E-02 2.10E-02 1.87E-02	Step error 6.00E-04 4.40E-04 4.20E-04 4.80E-04 3.90E-04 3.00E-04	n 1 1 1 1 1 1 1 1	12 0.74 0.74 0.75 0.75 0.74 0.74	Secon k2 (1/s) 3.03E-03 3.18E-03 3.11E-03 3.11E-03 3.05E-03 2.98E-03	d Step error 1.00E-05 9.83E-06 1.00E-05 1.00E-05 9.35E-06 8.30E-06	t0 (s) 1430 1420 1440 1440 1450 1465
2LM1TiO2 Cycle 1 2 3 4 5 6 7	Fitting R2 0.99871 0.99901 0.99884 0.99848 0.99897 0.99916 0.99926	11 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26	First k1 (1/s) 2.43E-02 2.36E-02 2.17E-02 2.13E-02 2.10E-02 1.87E-02 1.85E-02	Step error 6.00E-04 4.40E-04 4.20E-04 4.80E-04 3.90E-04 3.00E-04 2.90E-04	n 1 1 1 1 1 1 1 1 1	12 0.74 0.74 0.75 0.75 0.74 0.74 0.74	Secon k2 (1/s) 3.03E-03 3.18E-03 3.11E-03 3.05E-03 2.98E-03 2.99E-03	d Step error 1.00E-05 9.83E-06 1.00E-05 1.00E-05 9.35E-06 8.30E-06 7.70E-06	t0 (s) 1430 1420 1440 1440 1450 1465 1450
2LM1TiO2 Cycle 1 2 3 4 5 6 7 8	Fitting R2 0.99871 0.99901 0.99884 0.99848 0.99897 0.99916 0.99926 0.99927	I1 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26	First k1 (1/s) 2.43E-02 2.36E-02 2.17E-02 2.13E-02 2.10E-02 1.87E-02 1.85E-02 1.79E-02	Step error 6.00E-04 4.40E-04 4.20E-04 4.80E-04 3.90E-04 3.00E-04 2.90E-04 2.80E-04	n 1 1 1 1 1 1 1 1 1 1	12 0.74 0.74 0.75 0.75 0.74 0.74 0.74 0.74 0.72	Secon k2 (1/s) 3.03E-03 3.18E-03 3.11E-03 3.05E-03 2.98E-03 2.99E-03 2.97E-03	d Step error 1.00E-05 9.83E-06 1.00E-05 1.00E-05 9.35E-06 8.30E-06 7.70E-06 7.82E-06	t0 (s) 1430 1420 1440 1440 1450 1465 1450 1470
2LM1TiO2 Cycle 1 2 3 4 5 6 7 8 9	Fitting R2 0.99871 0.99901 0.99884 0.99848 0.99897 0.99916 0.99926 0.99927 0.99881	I1 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26	First k1 (1/s) 2.43E-02 2.36E-02 2.17E-02 2.13E-02 2.10E-02 1.87E-02 1.85E-02 1.79E-02 1.84E-02	Step error 6.00E-04 4.40E-04 4.20E-04 4.80E-04 3.90E-04 3.00E-04 2.90E-04 2.80E-04 3.70E-04	n 1 1 1 1 1 1 1 1 1 1 1	12 0.74 0.74 0.75 0.75 0.74 0.74 0.74 0.72 0.72	Secon k2 (1/s) 3.03E-03 3.18E-03 3.11E-03 3.05E-03 2.98E-03 2.99E-03 2.97E-03 2.97E-03	d Step error 1.00E-05 9.83E-06 1.00E-05 9.35E-06 8.30E-06 7.70E-06 7.82E-06 9.97E-06	t0 (s) 1430 1420 1440 1440 1450 1465 1450 1470 1480

Table S2 Fitting parameters for the JMA+PT model for the dehydrogenation kinetic curves during cycling at 400 $^{\circ}$ C and 3 bar of H₂: 2LM and 2LM1TiO₂. **Note:** The unit of the rate constant and t0 are (1/s) and (s), respectively. For the sake of clarity in the inset plot of Fig. 7 the time axis is expressed in unit of (minutes).

2LM Absorption							
Fitting -	JMA, n = 1		Equation: f = 1 - (exp(-k*t)^n)				
T (°C)	k (1/s)	Error	Adj. R-Square				
350	0.00022	2.60E-07	0.99757				
360	0.00026	2.62E-07	0.99691				
375	0.00037	7.51E-07	0.99662				
380	0.00046	3.82E-07	0.99885				
390	0.00053	1.47E-06	0.99621				
400	0.0007	3.49E-06	0.98973				

2LM1TiO ₂ Absorption							
itting -	JMA, n = 1		Equation: f = 1 - (exp(-k*t)^n)				
T (°C)	k (1/s)	Error	Adj. R-Square				
350	0.00098	1.55E-06	0.9979				
360	0.00127	3.39E-06	0.9983				
375	0.00173	6.89E-06	0.9961				
390	0.00304	2.00E-05	0.9848				
380	0.00215	8.42E-06	0.9915				
400	0.00352	2.00E-05	0.9838				

Fig.S17 Hydrogenation curve fitting in the range of temperature between 350 $^{\circ}$ C and 400 $^{\circ}$ C for 2LM and 2LMTiO₂. **Note:** The unit of the rate constant is (1/s). For the sake of clarity in the Fig. S17 A and B the time axis is expressed in unit of (minutes).

Fig.S18 Dehydrogenation curve fitting in the range of temperature between 380 °C and 410 °C for 2LM and 2LMTiO₂. **Note:** The unit of the rate constant and t0 are (1/s) and (s), respectively. For the sake of clarity in the Fig. S18 A and B the time axis is expressed in unit of (minutes).

Fig. S19 PXD hydrogenated (a) 2LM and (b) 2LM1TiO₂ after 10th absorption-desorption cycles.