Electronic Supplementary Information

Functionalised metal-organic frameworks: a novel approach to stabilising

single metal atoms

P. Á. Szilágyi, D. M. Rogers, I. Zaiser, E. Callini, S. Turner, A. Borgschulte, A. Züttel, H. Geerlings, M.

Hirscher and B. Dam

Figure S1 From left to right: half of a large pore of NH_2 -MIL-101(Cr) highlighting the specific $Pd^{2+}-NH_2$ bonding and DRIFT spectrum of the pristine, $Pd(ac)_2$ and Pd containing NH_2 -MIL-101(Cr) in the N-H vibration mode region displaying a slight shift due to specific bonding

Figure S2 X-ray photoelectron spectra of the $Pd(ac)_2$ precursor (in blue) and the elemental Pd (in red) containing NH₂-MIL-101(Cr)

Figure S3 TEM tomography images of the Pd containing NH_2 -MIL-101(Cr), **a**) HAADF-STEM image taken at 0 degrees tilt; **b**) reconstructed volume; **c**) and **d**) ortho-slices through the reconstructed volume; some particles are present at the surface of the MOF host (examples shown in black arrows), others are clearly embedded within the host volume (examples shown in white arrows).

These distinctions can be made as particles on the surface appear exposed in certain ortho-slices while embedded particles appear in the centre of the MOF particle in every ortho-slice.

Figure S4 Raman spectra of the Pd containing NH_2 -MIL-101(Cr) under vacuum in grey and the pressure cell in black, the pristine NH_2 -MIL-101(Cr) in green and the Pd containing NH_2 -MIL-101(Cr) in red **c**) under 20 bar hydrogen and **d**) deuterium pressure at ambient temperature

Under 20 bar hydrogen pressure, the appearance of a small peak at 994.5 cm⁻¹ can be observed (left). Furthermore, when hydrogen was replaced by deuterium (right), another peak was detected at 698.3 cm⁻¹, representing an isomer shift by a factor of 1.4 (or *ca*. $\sqrt{2}$). Such shift is indicative of the formation of adducts with a hydrogen molecule or an atom.

Figure S5 Hydrogen adsorption isotherms of the empty, the $Pd(ac)_2$ precursor and the elemental Pdsupporting NH₂-MIL-101 at 77 (left) and 298 K (right)

Metal-organic frameworks are chemically diverse materials. Even when NH₂-MIL-101 does not contain any Pd guest, it has various sites where H₂ can be adsorbed, such as the cationic unit, the – NH₂ functional groups, *etc.* ^[20], these various adsorption sites interact with hydrogen with various strength. Therefore, when the material is exposed to hydrogen, first the most strongly bonded hydrogen molecules will be adsorbed, continued by the second strongest and so on, until at high hydrogen pressures the volume of the pores will be filled indiscriminately. In addition, at low temperatures the adsorption sites can more easily bind hydrogen and thus the sample only needs to be exposed to smaller amounts of hydrogen to achieve high hydrogen adsorption or coverage of hydrogen (high temperature, low pressure) only the most strongly binding adsorption sites will be filled with hydrogen and so the hydrogen adsorption measured will be directly proportionate with the concentration of these sites. On the other hand, at low temperatures and high pressures the hydrogen uptake will be related to the total available pore volume.

The low temperature isotherm (left) reveals no great change in the hydrogen uptake for high loadings as the available pore volume did not change considerably on account of the low (0.85 wt%) Pd loading. On the other hand, in the high-temperature, *i.e.* low hydrogen loading, part of the isotherm (right) displays and increased uptake of hydrogen upon the addition of Pd. As this increase is only observed when the Pd added is in its reduced (atomic and particular) form, it can be associated with additional, strongly binding, hydrogen adsorption sites.

Figure S6 Hydrogen adsorption (red) and desorption (green) isotherms on 'Pd in NH_2 -MIL-101(Cr)' measured at 87 K

Figure S7 X-ray photoelectron spectra of the $Pd(ac)_2$ precursor (in blue) and the elemental Pd (in red) containing NH₂-MIL-101(Cr), showing no oxidation changes in the Cr³⁺ cationic unit before and after the reduction of the Pd(NO₃)₂ precursor at elevated temperatures in a hydrogen stream.

Figure S8 Temperature-programmed desorption spectra of deuterium on a semi-logarithmic scale from the pristine (green) and the Pd containing (red) NH₂-MIL-101(Cr). Note that desorption peak from the MOF CUS, which is over 20x the intensity than the 290 K peak; this is consistent with the Cr concentration being *ca*. 23x higher than that of Pd.

Figure S9 Nitrogen adsorption isotherms of the empty, the $Pd(ac)_2$ precursor and the elemental Pd-supporting NH₂-MIL-101 at 77 K.

Reaction	Structure	Enthalpy (kJ/mol)	Free energy (kJ/mol)			
	H ₂					
Pd (¹ A _{1G}) + H ₂ (¹ Σ_g) \rightarrow Pd(H ₂) (¹ A ₁)		-83.32	-60.32			
Pd (¹ A _{1G}) + H ₂ (¹ Σ_g) \rightarrow PdH ₂ (¹ A ₁)		-70.55	-49.01			
Pd (¹ A _{1G}) + Pd(H ₂) (¹ A ₁) → Pd ₂ (H ₂) (¹ A ₁) (TS)		-41.72	-14.93			
Pd (¹ A _{1G}) + NH ₃ (¹ A') → PdNH ₃ (¹ A)		-79.68	-49.57			
PdNH ₃ (¹ A) + H ₂ (¹ Σ_g) → NH ₃ Pd(H ₂) (¹ A) (TS)		-113.00	-77.92			
Pd(H ₂) (¹ A ₁) + NH ₃ (¹ A') → NH ₃ Pd(H ₂) (¹ A) (TS)		-109.35	-67.17			

Table S1 Reaction enthalpies and free energies calculated at 298K for $H_2 Pd^0$ and $Pd^0(NH_3)$ at the B3LYP/aug-cc-pVDZ-PP level of theory

Table S2 Reaction enthalpies and free energies calculated at 298K for H_2 with Pd⁰, Pd¹ and Pd¹¹, and Pd⁰(NH₃), Pd¹(NH₃) and Pd¹¹(NH₃) at the B3LYP/6-311++G(2d,2p)/SDD level of theory

Reaction	Structure	Enthalpy (kJ/mol)	Free energy (kJ/mol)
	Pd 0	I	
$Pd ({}^{1}A_{1G}) + 1/2H_{2} ({}^{1}\!\Sigma_{g}) \rightarrow PdH ({}^{2}\!\Sigma)$	Pd 1.54 Å H	-14.66	-7.83
$Pd ({}^{1}A_{1G}) + H_{2} ({}^{1}\Sigma_{g}) \rightarrow Pd(H_{2}) ({}^{1}A_{1})$	Pd 29.1* 0.85 A 1.7 A H	-72.33	-49.44
Pd (¹ A _{1G}) + H ₂ (¹ Σ_g) \rightarrow PdH ₂ (¹ A ₁)	Pd 72.3° 1.52 A H	-54.50	-33.04
Pd (¹ A _{1G}) + Pd(H ₂) (¹ A ₁) → Pd ₂ (H ₂) (¹ A ₁) (TS)	Pa 277A Pa 285° 085A H	-39.95	-12.07
Pd (¹ A _{1G}) + Pd(H ₂) (¹ A ₁) → Pd ₂ H ₂ (¹ A _G)	Pd 271 A Pd	-173.42	-142.82
$\begin{array}{c} Pd_2 \ ({}^3\Sigma_{u}) + H_2 \ ({}^1\Sigma_{g}) \to Pd_2(H_2) \\ ({}^3A_1) \end{array}$	Po 252A Pd Po 102A OrgA OrgA Pd Po 102A Pd P	-24.74	4.23

$\begin{array}{ c c } Pd(H_2) \ ({}^1A_1) + H_2 \ ({}^1\Sigma_g) \to Pd(H_2)_2 \\ ({}^1A_1) \end{array}$	H 082A 775 H H 175A H	-65.71	-33.05
Pd(H ₂) (¹ A ₁) + 2H ₂ (¹ Σ _g) → Pd(H ₂) ₃ (¹ A ₁)	H 93.6* 0.82 A 15 A H H H H H H	-86.81	-23.68
Pd (¹ A _{1G}) + H ₂ (¹ Σ_g) \rightarrow PdH ₂ (¹ Σ) (<i>1a</i>) (TS)	Pd 1.78 A H 0.77 A H	-30.22	-6.21
$\begin{array}{c} Pd ({}^{1}A_{1G}) + H_{2} ({}^{1}\!\Sigma_{g}) \rightarrow PdH_{2} ({}^{1}\!\Sigma_{g}) \\ (\boldsymbol{1b}) \end{array}$	H 154 A H	142.98	170.30
PdH (² ∑) + H ₂ (¹ ∑ _g) → PdH(H ₂) (² A ₁)	H 157 A Pd 2001 159 A H	-32.55	-1.63
Pd ₂ (³ Σ _u) + 1/2H ₂ (¹ Σ _g) → Pd ₂ H (² A')	Pd 285A Pd	-56.45	-45.26
Pd (¹ A _{1G}) + NH ₃ (¹ A') \rightarrow PdNH ₃ (¹ A)	Pd 2.12Å N H	-74.96	-44.83
PdNH ₃ (¹ A) + H ₂ (¹ Σ_g) → NH ₃ Pd(H ₂) (¹ A) (TS)	H N 215A PO 45 A DSA	-102.19	-67.57

Pd(H ₂) (¹ A ₁) + NH ₃ (¹ A') → NH ₃ Pd(H ₂) (¹ A) (TS)		104.82	62.96
	Pd I		
$\begin{array}{c} Pd^{1+}\left({}^{2}A\right)+H_{2}\left({}^{1}\boldsymbol{\Sigma}_{g}\right)\toPd^{1+}(H_{2})\\ ({}^{2}A_{1})\end{array}$	Pd 23.4 " 1.82 A H H H H	-81.13	-58.56
Pd ¹⁺ (² A) + H ₂ (¹ Σ _g) → Pd ¹⁺ (H ₂) (² A ₂)	Pd 23.0 1.96 Å 1.96 Å H	-48.86	-27.01
	Pd II		
Pd^{2+} (³ A _{1G}) + 1/2H ₂ (¹ Σ _g) → Pd ²⁺ (H) (² Σ)	Pd 1.6 Å H	-36.94	-27.59
Pd ²⁺ (³ A _{1G}) + H ₂ (¹ Σ _g) → Pd ²⁺ (H ₂) (¹ A ₁)	Pd 31.5°	-107.92	-82.42
$\begin{array}{c} Pd^{2+}\left({}^{1}A_{1G}\right)+1/2H_{2}\left({}^{1}\boldsymbol{\Sigma}_{g}\right)\rightarrow\\ Pd^{2+}(H)\left({}^{2}\boldsymbol{\Sigma}\right)\end{array}$	Pd 1.6 Å H	-272.55	-265.93
$\begin{array}{ c c c c c } Pd^{2+} ({}^{1}A_{1G}) + H_{2} ({}^{1}\Sigma_{g}) \rightarrow Pd^{2+}(H_{2}) \\ ({}^{1}A_{1}) \end{array}$	Pd 31.5°	-343.54	-320.76

Electronic states in parentheses. TS in parentheses denote a transition state structure. Isolated Pd 0 is considered as a singlet and is $[Kr]5s^04d^{10}$. **1a** in parenthesis denotes reaction to linear PdHH; **1b** denotes reaction to linear HPdH.

Table S3 Reaction enthalpies and free energies calculated at 298K for H_2 with Pd 0 at the CCSD/6-311++G(2d,2p)/SDD level of theory

Reaction	Enthalpy (kJ/mol)	Free energy (kJ/mol)
Pd	0	
$Pd\;({}^{1}A_{1G}) + 1/2H_{2}\;({}^{1}\boldsymbol{\Sigma}_{g}) \rightarrow PdH\;({}^{2}\boldsymbol{\Sigma})$	-11.58	-4.76
$Pd ({}^{1}A_{1G}) + H_{2} ({}^{1}\!\Sigma_{g}) \rightarrow Pd(H_{2}) ({}^{1}\!A_{1})$	-68.51	-45.53
$Pd ({}^{1}A_{1G}) + H_{2} ({}^{1}\Sigma_{g}) \rightarrow PdH_{2} ({}^{1}A_{1})$	-56.14	-34.45
$Pd ({}^{1}A_{1G}) + Pd(H_{2}) ({}^{1}A_{1}) \rightarrow Pd_{2}H_{2} ({}^{1}A_{G})$	-175.02	-142.79

Electronic states in parentheses. Isolated Pd 0 is considered as a singlet and is [Kr]5s⁰4d¹⁰.

Table S4 Total energies and predicted harmonic vibrational frequencies for the complexes of H_2 with Pd 0 calculated at the B3LYP/aug-cc-pVDZ-PP level of theory

Species	Energy (Hartrees)	Frequencies (cm ⁻¹)			
H ₂					
Pd(H ₂) (¹ A ₁)	-128.6973098	1028, 1513, 2777			
PdH ₂ (¹ A ₁)	-128.6914703	530, 2089, 2197			
Pd ₂ (H ₂) (¹ A ₁) (TS)	-256.2039392	163 <i>i</i> , 55, 118, 974, 1491, 2835			
	-184.0938796	357, 498, 498, 1092, 1617, 1618,			
		3459, 3572, 3572			
	-185.3131587	18 <i>i</i> , 271 [#] , 319 [#] , 373, 524, 554,			
$NH_{3}Pd(H_{2})$ (¹ A) (TS)		1140, 1167, 1623, 1624, 1681,			
		2831, 3460*, 3573, 3573			

i denotes an imaginary frequency; [#] denotes that the mode is IR active only; * denotes that the mode is Raman active only. Electronic spin states in parentheses.

Table S5 Total energies and predicted harmonic vibrational frequencies for the complexes of H_2 with Pd 0, Pd I and Pd II calculated at the B3LYP/6-311++G(2d,2p)/SDD level of theory

Species	Energy (Hartrees)	Frequencies (cm ⁻¹)
	Pd 0	
PdH (²Σ)	-128.4808125	2015
$Pd(H_2) (^{1}A_1)$	-129.0943219	1005, 1444, 2949
PdH ₂ (¹ A ₁)	-129.0864029	529*, 2099, 2204
Pd ₂ (H ₂) (¹ A ₁) (TS)	-256.9954222	148 <i>i</i> , 86, 118, 947, 1413, 3010
Pd_2H_2 (¹ A _G)	-257.0463077	170#, 199*, 1234*, 1277#,
		1361#, 1487*
$Pd_2(H_2)$ (³ A ₁)	-256.9966921	200, 219, 223, 713, 1093, 3632

$Pd(H_2)_2 (^1A_1)$	-130.3032017	253#, 253#, 541*, 897, 1086*,
		1409, 1409, 3276*, 3296
$Pd(H_2)_3 (^1A_1)$	-131.4931625	327, 330, 362#, 435*, 445*,
		482*, 825, 825, 955*, 1268,
		1342, 1346, 3251, 3263, 3288
PdH ₂ (¹ Σ) (1 <i>a</i>) (TS)	-129.0759822	527 <i>i</i> , 527 <i>i</i> , 657, 3899
$PdH_{2}(^{1}\Sigma_{g})(1b)$	-129.0121613	965#, 965#, 1645#, 1943*
$PdH(H_2) (^2A_1)$	-129.6761619	327, 330, 362#, 435*, 445*, 482,
		825, 825, 955*, 1268, 1342,
		1346, 3251, 3263, 3288
Pd ₂ H (² A')	-256.4165948	111, 1147, 1379
	-184.5027192	353, 512, 515, 1110, 1659,
		1659, 3486, 3588, 3588
	-185.7237574	90 <i>i</i> , 258 [#] , 297, 365, 538, 558,
NH ₃ Pd(H ₂) (¹ A) (TS)		1136, 1157#, 1644, 1663, 1664,
		2944, 3485*, 3586, 3587
	Pd I	
Pd ¹⁺ (H ₂) (² A ₁)	-128.7786724	871, 1275, 3573
Pd ¹⁺ (H ₂) (² A ₂)	-128.7656992	660, 872, 3837
	Pd II	
Pd ²⁺ (H) (² Σ)	-127.4472855	1431
$Pd^{2+}(H_2)$ (¹ A ₁)	-128.0665068	1170, 1405, 2529

i denotes an imaginary frequency; [#] denotes that the mode is IR active only; ^{*} denotes that the mode is Raman active only. Electronic states in parentheses. *1a* in parenthesis denotes reaction to linear PdHH; *1b* denotes reaction to linear HPdH.

Table S6 Total energies and predicted harmonic vibrational frequencies for the complexes of H_2 with Pd 0 calculated at the CCSD/6-311++G(2d,2p)/SDD level of theory

Species	Energy (Hartrees)	Frequencies (cm ⁻¹)	
	Pd 0		
PdH (²Σ)	-127.7332857	1983	
Pd(H ₂) (¹ A ₁)	-128.3422766	1021, 1524, 2967	
PdH ₂ (¹ A ₁)	-128.3362855	607, 2101, 2191	
Pd_2H_2 (¹ A _G)	-255.5536126	216, 316, 1277, 1367, 1464,	
		1508	

Electronic states in parentheses. No Raman activities are available at this level of theory in the version of Gaussian 09 employed.

Table S7 Optimised Cartesian coordinates and total energies (Hartrees) for the complexes of H₂ with Pd using B3LYP/aug-cc-pVDZ-PP

Centre	Atomic	Atomic type	<i>x,</i> Å	<i>y,</i> Å	<i>z,</i> Å
number	number				
$Pd(H_2)$ (¹ A ₁)	-128.6973098				
1	46	0	0.000000	0.000000	0.067446
2	1	0	0.000000	0.442655	-1.551256
3	1	0	0.000000	-0.442655	-1.551256
$PdH_2 (^1A_1)$	-128.6914703				
1	46	0	0.000000	0.000000	0.051015

2	1	0	0.000000	0.904064	-1.173340
3	1	0	0.000000	-0.904064	-1.173340
Pd ₂ (H ₂) (¹ A ₁) (TS) -256.2039392					
1	46	0	0.000000	0.000000	-1.303275
2	1	0	0.000000	0.438417	-2.937594
3	1	0	0.000000	-0.438417	-2.937594
4	46	0	0.000000	0.000000	1.430997
PdNH ₃ (¹ A)	-184.0938796		•	•	
1	46	0	0.402873	0.000036	-0.000533
2	7	0	-1.745838	0.001493	-0.001920
3	1	0	-2.126704	-0.782473	-0.562931
4	1	0	-2.057679	-0.115445	0.971505
5	1	0	-2.126903	0.885820	-0.370620
$NH_3Pd(H_2)$	(1A) (TS)	-185.3131587			
1	46	0	0.332465	-0.000044	0.000259
2	1	0	1.934516	0.440129	-0.001768
3	1	0	1.934598	-0.439667	-0.001705
4	1	0	-1.805843	-0.000223	0.000976
5	7	0	-2.165881	0.851737	-0.425257
6	1	0	-2.169013	-0.787423	-0.533346
7	1	0	-2.186708	-0.061199	0.943331