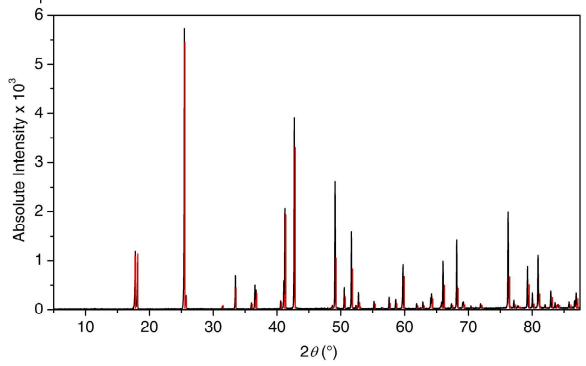
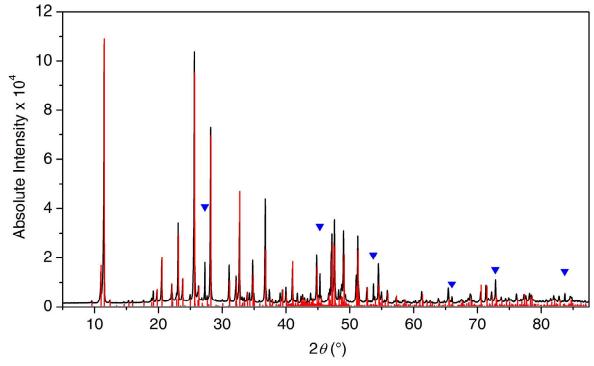
Electrochemical Synthesis of the Allotrope *allo*-Ge and Investigations on the Use as an Anode Material

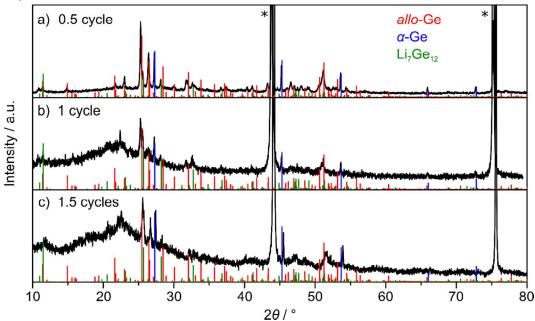

L. M. Scherf,^a† J. Hattendorff,^b† I. Buchberger,^b S. Geier,^a H. A. Gasteiger,^b T. F. Fässler^a

- ^a Lehrstuhl für Anorganische Chemie mit Schwerpunkt Neue Materialien, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85749 Garching b. München, Germany.
- Lehrstuhl für Technische Elektrochemie, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85749 Garching b. München, Germany.
- † These authors contributed equally to this work.

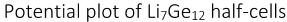
Contents

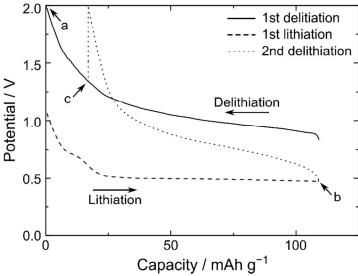

PXRD pattern of LiGe2PXRD pattern of Li₇Ge₁₂2PXRD patterns of extracted Li₇Ge₁₂ electrode materials3Potential plot of Li₇Ge₁₂ half-cells3PXRD pattern of m-allo-Ge4PXRD pattern of α-Ge4SEM images of electrochemically synthesized allo-Ge5Particle Size Analysis5Coin Cell dQ/dV Curves6Ex-situ PXRD patterns of coin cell anode materials after cycling7Selected in-situ PXRD patterns7dQ/dV Plot for • -Ge pouch cells8References9

PXRD pattern of LiGe

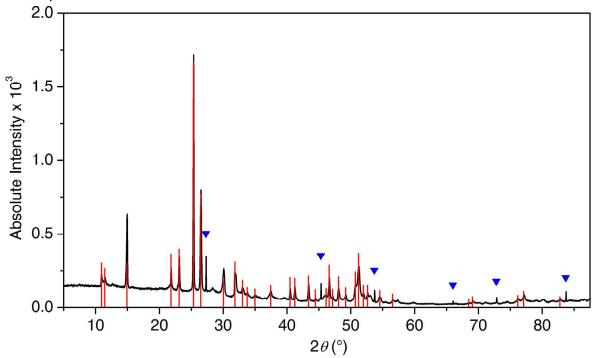

Fig. S1: Experimental (black) and calculated (red) PXRD patterns of LiGe. PSD steps 1.5 °, time/step 15 s.

PXRD pattern of Li₇Ge₁₂




Fig. S2: Experimental (black) and calculated (red) PXRD patterns of Li_7Ge_{12} . Blue triangles denote traces of α -Ge. PSD steps 0.07 °, time/step 45 s.

PXRD patterns of extracted Li₇Ge₁₂ electrode materials


Fig. S3. Powder diffraction patterns of electrode material extracted from coin cells; a) after one delithiation step *allo*-Ge has clearly been formed, b) after one full delithiation/lithiation cycle less allo-Ge is present and a broad signal appears around 22°, c) after 1.5 cycles the ratio of crystalline phases does not change anymore but the broad signal grows; theoretical powder patterns of *allo*-Ge, 1 α -Ge, 2 and $\text{Li}_{7}\text{Ge}_{12}^{3}$ are given in red, blue, and green, respectively; diamond powder was added to all electrode materials post-cycling for easier handling of the material, corresponding reflexes are marked by an asterisk. The 1 and 1.5 cycle samples are mainly amorphous and are scaled differently than the 0.5 cycle samples to elucidate the remaining crystalline phases.

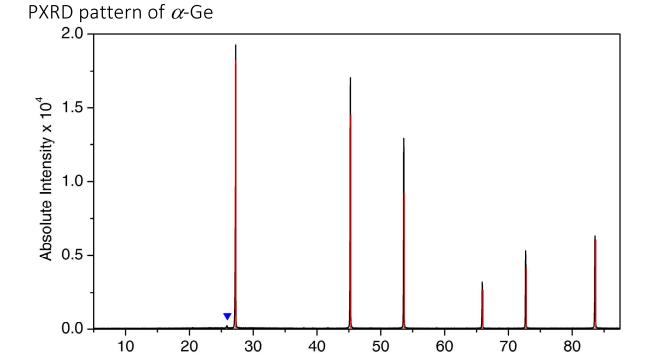


Fig. S4. Potential curves of the first 1.5 cycles of Li_7Ge_{12} half-cells beginning with the first delithiation cycle to 2 V. The powder diffraction state of powder diffraction patterns a–c in Fig. S3 are marked with the respective letters.

PXRD pattern of *m-allo-*Ge

Fig. S5: Experimental (black) and calculated (red) PXRD patterns of *m-allo-*Ge. Blue triangles denote traces of α -Ge. PSD steps 0.07 °, time/step 30 s.

Fig. S6: Experimental (black) and calculated (red) PXRD patterns of α -Ge. The blue triangle marks traces of GeO₂. PSD steps 1.5 °, time/step 15 s.

2θ(°)

SEM images of electrochemically synthesized allo-Ge

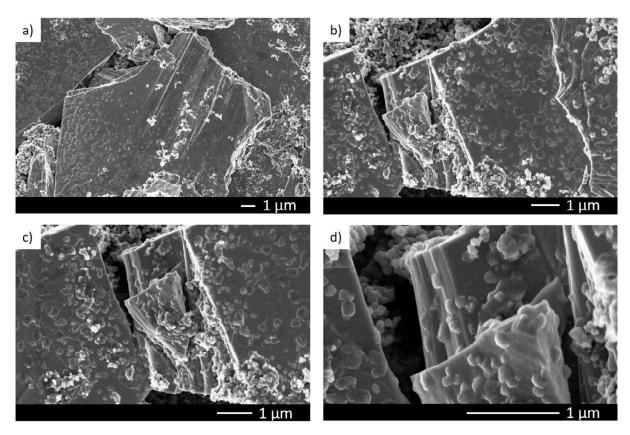


Fig. S7. SEM images of electrochemically synthesized *allo-*Ge.

Particle Size Analysis

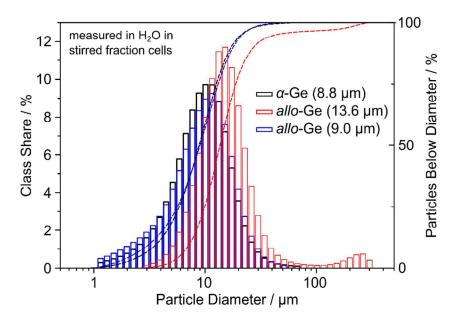
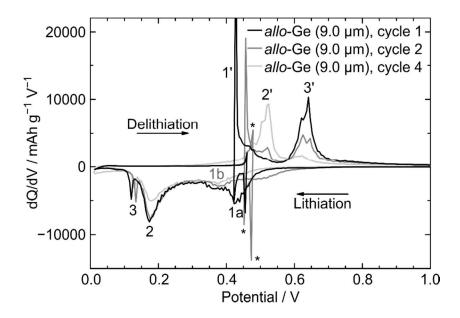
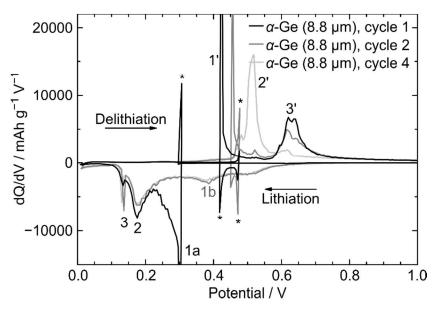




Fig. S8. Particle size analysis of Ge anode materials in H_2O in stirred fraction cell by laser scattering, volume-based distribution. The median of the respective samples is given.

Coin Cell dQ/dV Curves

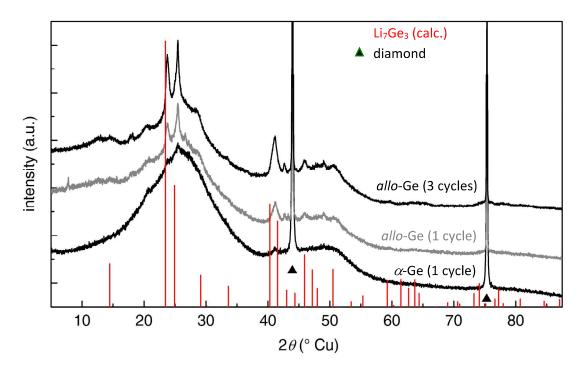
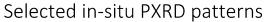
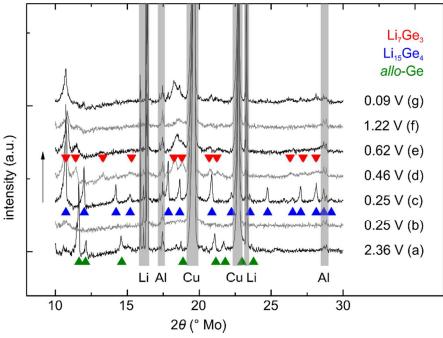


Fig. S9. dQ/dV curves from *allo*-Ge coin cells. Features marked with (*) are artifacts due to overpotentials. First, second and fourth cycles shown.




Fig. S10. dQ/dV curves for α -Ge coin cells. Features marked with (*) are artifacts due to overpotentials. First, second and fourth cycles shown.

Ex-situ PXRD patterns of coin cell anode materials after cycling

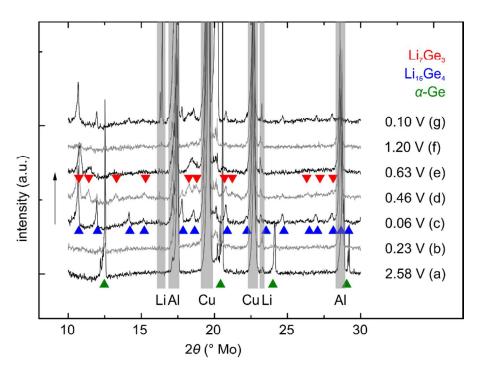


Fig. S11. Ex-situ-PXRD patterns of anode materials α —Ge after 1 discharge/charge cycle, allo-Ge after 1 discharge/charge cycle, and allo-Ge after 3 discharge/charge cycles. All materials contain varying amounts of a crystalline phase resembling Li₇Ge₃ (calculated diffraction pattern in red). Black triangles denote reflections of diamond which was mixed with the anode materials for easier handling.

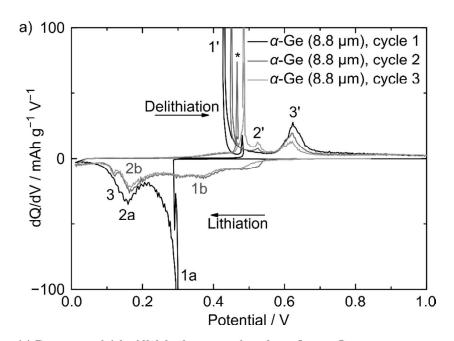


Fig. S12. Selected diffraction patterns from *allo*-Ge pouch cell. Data shown is averaged over 4 raw data files, i.e. one hour of measurement. The main reflections of all observed crystalline phases are marked. The average voltage and the position in Fig. 5 is indicated.

Fig. S13. Selected diffraction patterns from α -Ge pouch cell. Data shown is averaged over 4 raw data files, i.e. one hour of measurement. The main reflections of all observed crystalline phases are marked. The average voltage and the position in Fig. 6 is indicated.

dQ/dV Plot for α -Ge pouch cells

b) Proposed (de-)lithiation mechanism for α -Ge:

$$\begin{array}{c} \stackrel{2a}{\underset{15}{\longleftarrow}} amorphous \ Li_7Ge_3? \stackrel{1a}{\underset{15}{\longleftarrow}} \alpha\text{-Ge} \\ Li_{15}Ge_4 \stackrel{3}{\underset{1'}{\longleftarrow}} amorphous \ Li_{13}Ge_4? \stackrel{2b}{\underset{2'}{\longleftarrow}} Li_7Ge_3 \stackrel{1b}{\underset{3'}{\longleftarrow}} amorphous \ Ge \end{array}$$

Fig. S14. a) dQ/dV plot of α-Ge in in-situ PCRD pouch cell. An overpotential leads to an artifact peak and is marked by (*), b) proposed (de-)lithiation mechanism for α-Ge, in agreement with Grey *et al.*⁴

References

- F. Kiefer, A. J. Karttunen, M. Döblinger and T. F. Fässler, *Chem. Mater.*, 2011, **23**, 4578–4586.
- 2 M. E. Straumanis and E. Z. Aka, J. Appl. Phys., 1952, 23, 330–334.
- 3 F. Kiefer and T. F. Fässler, Solid State Sci., 2011, **13**, 636–640.
- 4 H. Jung, P. K. Allan, Y.-Y. Hu, O. J. Borkiewicz, X.-L. Wang, W.-Q. Han, L.-S. Du, C. J. Pickard, P. J. Chupas, K. W. Chapman, A. J. Morris and C. P. Grey, *Chem. Mater.*, 2015, **27**, 1031–1041.