2D Free-standing Film-Inspired Electrocatalyst for Highly Efficient Hydrogen Production

Jian Gao, Zhihua Cheng, Changxiang Shao, Yang Zhao*, Zhipan Zhang and Liangti Qu*

Key Laboratory of Photoelectronic/Eletrophotonic Conversion Materials, School of

Chemistry, Beijing Institute of Technology, Beijing 100081, P. R. China

Figure S1 (a, b) The SEM images of the as-prepared molybdenum trioxide (MoO₃) nanoribbons.

Figure S2 The photograph of the self-standing film prepared via a conversion from the MoO₃ nanoribbon/GO film (claybank color) and Mo₂C nanoribbon/N-G film (shiny metallic luster).

Figure S3 photographs of the free-standing Mo₂C nanoribbon/N-G film.

Figure S4 The SEM images of the cross-section (a, b) and top surface (c, d) of MoO₃ nanoribbon/GO film.

Figure S5 EDS spectrum of the Mo₂C nanoribbon/N-G film.

Figure S6 HR-TEM image of the Mo_2C nanocrystals on the surface of Mo_2C nanoribbon/N-G film.

Samples	Mo/XPS	C/XPS	N/XPS	O/XPS
	(wt%)	(wt%)	(wt%)	(wt%)
Mo ₂ C				
nanoribbon/N-G	1.07	84.95	8.54	5.44
film				

Table S1 Elemental contents of Mo_2C nanoribbon/N-G film.

Non-noble metal based free- standing catalysts	Onset overpotential mV	Current density mA cm ⁻²	Overpotential mV	Ref.
NiSe ₂ nanowall/carbon cloth	120	10	145	1
Mo ₂ C nanobeads on				
Graphene-coated carbon	115	10	188	2
nanofibers (G-CNF)				
membrane				
3D graphene/	110	50	200	3
MoS ₂ composites				
Cu nanoparticles/carbon	61	10	200	4
nanofibers hybrid				
Monolayer MoS ₂ films/3D	118	10	226	5
nanoporous metals				
NiO@C nanobelt	-	10	294	6
3D ReS ₂ /carbon foam	-	10	336	7
MosC nanoribbon/N-C film	84	10	162	This
	70			work

 Table S2.
 Summary of representative non-noble metal based free-standing HER

 catalysts in acidic electrolyte.

Mo ₂ C-based HER catalyst	Current density	Overpotential	Reference
MoCN	10 mA cm ⁻²	145 mV	8
Mo ₂ C nanocrystal embedded N-	10 m A am- ²	147 mV	9
doped carbon nanotubes	10 mA cm ²		
Mo ₂ C nano-rod Ni impregnated	$10 m \Lambda om^{-2}$	150 mV	10
Mo ₂ C nano-rod	10 mA cm ²	130 111	
Mo ₂ C/CNT	10 mA cm ⁻²	~150 mV	11
Commercial Mo ₂ C	10 mA cm ⁻²	192 mV	12
Mo ₂ C nanoparticles	10 mA cm ⁻²	198 mV	13
Mo ₂ C nanowires	10 mA cm ⁻²	4 cm ⁻² 200 mV	
Mo ₂ C Nanoparticles Decorated	$10 m \Lambda om^{-2}$	2 10	15
Graphitic Carbon Sheets	10 mA cm ²	210 111 V	
Mo ₂ C-carbon nanocomposite	5 mA cm ⁻²	260 mV	16
Ma C nanaribban/N C film	10 m A cm ⁻²	162 mV	This
	iv ma cm -	102 111 V	work

Table S3. Summary of representative Mo_2C -based HER catalysts in acidic electrolyte.

Figure S7 The Tafel plot of the Mo₂C nanoribbon/N-G film.

Figure S8 (a) Polarization curves and (b) Tafel plots of Mo₂C nanoribbon/N-G, Mo₂C nanoribbon/N-G_1 and Mo₂C nanoribbon/N-G_2 in 0.5 M H₂SO₄, respectively. (c) Polarization curves and (d) Tafel plots of Mo₂C nanoribbon/N-G at different carbonization temperature, respectively.

The weight percentage of MoO₃ nanoribbon in the Mo₂C nanoribbon/N-G film and calcination temperature play important role in HER properties. As shown in Figure S8a and b, the Mo₂C nanoribbon/N-G films with lower or higher weight percentage of MoO₃ nanoribbon are investigated. The corresponding samples are labeled as Mo₂C nanoribbon/N-G_1 (the weight ratio of MoO₃ nanoribbon to GO is 2:1) and Mo₂C nanoribbon/N-G_2 (the weight ratio of MoO₃ nanoribbon to GO is 8:1), respectively. However, both of the Mo₂C nanoribbon/N-G_1 and Mo₂C nanoribbon/N-G_2 exhibits poorer HER performance than that of the as-prepared Mo₂C nanoribbon/N-G (the weight percentage of MoO₃ nanoribbon is 5), which is probably due to the low electrocatalytic activity for the Mo₂C nanoribbon/N-G_1 and aggregation of Mo₂C nanoribbons in Mo₂C nanoribbon/N-G_2.

In addition, the Mo₂C nanoribbon/N-G film with different calcination temperatures (700 °C, 800 °C and 900 °C) are also studied. As demonstrated in Figure S8c and d, the Mo₂C nanoribbon/N-G film shows the increasing HER performance with the increase calcination temperature from 700 °C to 800 °C, probably attributed to efficient crystalline transformation of β -Mo₂C. However, when the calcination temperature reaches 900 °C, the as-prepared Mo₂C nanoribbon/N-G film exhibits a slight decrease of the HER performance, probably due to the loss of N element at high treating temperature.

Figure S9 The cyclic voltammetry (CV) of the Mo_2C nanoribbon (a) and N-G (c) with different rates from 20 to 200 mV s⁻¹ in 0.5 M H₂SO₄. The capacitive current at 0.2 V as a function of scan rate for Mo_2C nanoribbon (b) and N-G (d).

Figure S10 (a) HER polarization curves and (b) Tafel plots of Mo₂C nanoribbon/N-G, Mo₂C nanoribbon, N-G and Pt plate in the 1 M KOH, respectively. (c) HER polarization curves of Mo₂C nanoribbon/N-G at different scan rates.

Reference

- 1. C. Tang, L. Xie, X. Sun, A. M. Asiri and Y. He, Nanotechnology, 2016, 27, 20LT02.
- 2. W. Gao, Y. Shi, L. Zuo, W. Fan and T. Liu, Mater. Today Chem., 2016, 1, 32-39.
- 3. X. Wang, RSC Advances, 2016, 6, 31359-31362.
- J. Wang, H. Zhu, J. Chen, B. Zhang, M. Zhang, L. Wang and M. Du, *Int. J. Hydrogen Energ.*, 2016, 41, 18044-18049.
- 5. Y. Tan, P. Liu, L. Chen, W. Cong, Y. Ito, J. Han, X. Guo, Z. Tang, T. Fujita and A. Hirata, *Adv. Mater.*, 2014, **26**, 8023-8028.
- 6. Q. Dong, C. Sun, Z. Dai, X. Zang and X. Dong, ChemCatChem, 2016, 8, 3484-3489.
- L. Wang, Z. Sofer, J. Luxa, D. Sedmidubský, A. Ambrosi and M. Pumera, *Electrochem. Commun.*, 2016, 63, 39-43.
- 8. Y. Zhao, K. Kamiya, K. Hashimoto and S. Nakanishi, J. Am. Chem. Soc. 2014, 137, 110-113.
- 9. K. Zhang, Y. Zhao, D. Fu and Y. Chen, J. Mater. Chem. A, 2015, 3, 5783-5788.
- P. Xiao, Y. Yan, X. Ge, Z. Liu, J.-Y. Wang and X. Wang, *Appl. Catal. B Environ.*, 2014, 154, 232-237.
- 11. W.-F. Chen, C.-H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. Muckerman, Y. Zhu and R. Adzic, *Energy Environ. Sci.*, 2013, **6**, 943-951.
- 12. H. Vrubel and X. Hu, Angew. Chem. Int. Ed., 2012, 124, 12875-12878.
- L. Ma, L. R. L. Ting, V. Molinari, C. Giordano and B. S. Yeo, J. Mater. Chem. A, 2015, 3, 8361-8368.
- 14. C. Ge, P. Jiang, W. Cui, Z. Pu, Z. Xing, A. M. Asiri, A. Y. Obaid, X. Sun and J. Tian, *Electrochim. Acta*, 2014, **134**, 182-186.
- 15. W. Cui, N. Cheng, Q. Liu, C. Ge, A. M. Asiri and X. Sun, ACS Catal., 2014, 4, 2658-2661.
- 16. N. S. Alhajri, D. H. Anjum and K. Takanabe, J. Mater. Chem. A, 2014, 2, 10548-10556.