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Figure S1 (a, b) The SEM images of the as-prepared molybdenum trioxide (MoO3) 

nanoribbons. 
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Figure S2 The photograph of the self-standing film prepared via a conversion from the 

MoO3 nanoribbon/GO film (claybank color) and Mo2C nanoribbon/N-G film (shiny 

metallic luster).

Figure S3 photographs of the free-standing Mo2C nanoribbon/N-G film.



Figure S4 The SEM images of the cross-section (a, b) and top surface (c, d) of MoO3 

nanoribbon/GO film. 



Figure S5 EDS spectrum of the Mo2C nanoribbon/N-G film.

Figure S6 HR-TEM image of the Mo2C nanocrystals on the surface of Mo2C 

nanoribbon/N-G film.



Table S1 Elemental contents of Mo2C nanoribbon/N-G film.

Samples Mo/XPS 

(wt%)

C/XPS

(wt%)

N/XPS

(wt%)

O/XPS

(wt%)

Mo2C 

nanoribbon/N-G 

film

1.07 84.95 8.54 5.44



Table S2. Summary of representative non-noble metal based free-standing HER 

catalysts in acidic electrolyte.

Non-noble metal based free-

standing catalysts

Onset 

overpotential

mV

Current 

density 

mA cm-2

Overpotential

mV
Ref.

NiSe2 nanowall/carbon cloth 120 10 145 1

Mo2C nanobeads on 

Graphene-coated carbon 

nanofibers (G-CNF) 

membrane

115 10 188 2

3D graphene/ 

MoS2 composites
110 50 200 3

Cu nanoparticles/carbon 

nanofibers hybrid
61 10 200 4

Monolayer MoS2 films/3D 

nanoporous metals
118 10 226 5

NiO@C nanobelt - 10 294 6

3D ReS2/carbon foam - 10 336 7

Mo2C nanoribbon/N-G film 84 10 162
This 

work



Table S3. Summary of representative Mo2C-based HER catalysts in acidic electrolyte.

Mo2C-based HER catalyst Current density Overpotential Reference

MoCN 10 mA cm-2 145 mV 8

Mo2C nanocrystal embedded N-

doped carbon nanotubes
10 mA cm-2 147 mV 9

Mo2C nano-rod Ni impregnated 

Mo2C nano-rod
10 mA cm-2 150 mV 10

Mo2C/CNT 10 mA cm-2 ~150 mV 11

Commercial Mo2C 10 mA cm-2 192 mV 12

Mo2C nanoparticles 10 mA cm-2 198 mV 13

Mo2C nanowires 10 mA cm-2 200 mV 14

Mo2C Nanoparticles Decorated 

Graphitic Carbon Sheets
10 mA cm-2 210 mV 15

Mo2C-carbon nanocomposite 5 mA cm-2 260 mV 16

Mo2C nanoribbon/N-G film 10 mA cm-2 162 mV
This 

work



 

Figure S7 The Tafel plot of the Mo2C nanoribbon/N-G film.

Figure S8 (a) Polarization curves and (b) Tafel plots of Mo2C nanoribbon/N-G, Mo2C 

nanoribbon/N-G_1 and Mo2C nanoribbon/N-G_2 in 0.5 M H2SO4, respectively. (c) 

Polarization curves and (d) Tafel plots of Mo2C nanoribbon/N-G at different 

carbonization temperature, respectively.



The weight percentage of MoO3 nanoribbon in the Mo2C nanoribbon/N-G film 

and calcination temperature play important role in HER properties. As shown in Figure 

S8a and b, the Mo2C nanoribbon/N-G films with lower or higher weight percentage of 

MoO3 nanoribbon are investigated. The corresponding samples are labeled as Mo2C 

nanoribbon/N-G_1 (the weight ratio of MoO3 nanoribbon to GO is 2:1) and Mo2C 

nanoribbon/N-G_2 (the weight ratio of MoO3 nanoribbon to GO is 8:1), respectively. 

However, both of the Mo2C nanoribbon/N-G_1 and Mo2C nanoribbon/N-G_2 exhibits 

poorer HER performance than that of the as-prepared Mo2C nanoribbon/N-G (the 

weight percentage of MoO3 nanoribbon is 5), which is probably due to the low 

electrocatalytic activity for the Mo2C nanoribbon/N-G_1 and aggregation of Mo2C 

nanoribbons in Mo2C nanoribbon/N-G_2. 

In addition, the Mo2C nanoribbon/N-G film with different calcination 

temperatures (700 °C, 800 °C and 900 °C) are also studied. As demonstrated in Figure 

S8c and d, the Mo2C nanoribbon/N-G film shows the increasing HER performance with 

the increase calcination temperature from 700 °C to 800 °C, probably attributed to 

efficient crystalline transformation of β-Mo2C. However, when the calcination 

temperature reaches 900 °C, the as-prepared Mo2C nanoribbon/N-G film exhibits a 

slight decrease of the HER performance, probably due to the loss of N element at high 

treating temperature.



Figure S9 The cyclic voltammetry (CV) of the Mo2C nanoribbon (a) and N-G (c) with 

different rates from 20 to 200 mV s-1 in 0.5 M H2SO4. The capacitive current at 0.2 V 

as a function of scan rate for Mo2C nanoribbon (b) and N-G (d).

Figure S10 (a) HER polarization curves and (b) Tafel plots of Mo2C nanoribbon/N-G, 

Mo2C nanoribbon, N-G and Pt plate in the 1 M KOH, respectively. (c) HER polarization 

curves of Mo2C nanoribbon/N-G at different scan rates.
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