Facile synthesis of reduced graphene oxide wrapped porous $NiCo_2O_4$ composite with superior performance as an electrode material for supercapacitors

S. Al-Rubaye, R. Rajagopalan^{*}, S. X. Dou and Z. Cheng^{*}

Fig. SI-I. XRD pattern of a) graphite powder, and b) graphene oxide and reduced graphene oxide.

Fig. SI-II.TGA analysis of the NCO and different NCO- rGO nanocomposites.

Fig. SI-III. FESEM images of a) NCO-9rGO, b) NCO-13rGO, c) NCO-15rGO, d) NCO-25rGO, and e) NCO-45rGO hexagonalnanoplate composites.

Fig. SI-IV.FESEM images of (a, b) GO and (c, d) rGO at different magnifications.

Fig.SI-V.a) HRTEM image of rGO, and b) the corresponding SAED pattern

Fig. SI-VI. a) TEM image, b) nickel, c) cobalt d) oxygen, e) combined elemental mapping of NCO, and f)EDS spectrum of NCO nanoplate.

Fig.SI-VII. (a, c ,e) Nitrogen adsorption and desorption isotherms of rGO nanosheets, NCO, NCO-30rGO composite and (b, d, e) show the corresponding BJH pore size distributions.

Fig.SI-VIII. a) CV curves, b) charge /discharge curves, c) Nyquist plots recorded between 1 Hz and 100 kHz, and d) cycling performance of the NCO-30rGO device in 2 M KOH solution.

Table. SI-1. BET and BJH parameters.

Samples	BET specific surface area $(m^2 g^1)$	BJH pore volume $(\operatorname{cc} g^{-1})$	Average pore size (nm)	
rGO	301.603	2.445e-01	5.2 3.1 2.2	
NCO	75.2	4.103e-02		
NCO-30rGO	144.3	3.259e-02		

Table. SI-2 Comparison of the electrochemical performance of NCO-30rGO in the present study with reports in the literature.

Electrode material	Processing technique	Specific capacitance (F g ⁻¹)	No. of cycles	Stability	Ref. No.
$NiCo_2O_4@graphene$	Hydrothermal reaction	778 (1Ag ⁻¹)	1000	90%	19
NiCo ₂ O ₄ -rGO	Composite self assembly	1050 (2Ag ⁻¹)	4000	1721	20
NiCo ₂ O ₄ -rGO	Hydrothermal	947 (0.5Ag ⁻¹)	3000	92%	21
NiCo ₂ O ₄ @graphene	Hydrothermal	737 (1Ag ⁻¹)	3000	96%	22
NiCo ₂ O ₄ -rGO	Solvothermal	870 (2Ag ⁻¹)	5000	90%	30
NiCo ₂ O ₄ -rGO	Solution based	1186.3 (0.5Ag ⁻¹)	100	97%	31
NiCo ₂ O ₄ @graphene	Electrodeposition	1950(7.5Ag ⁻¹)	10000	92.8%	32
NiCo ₂ O ₄ -rGO	Electrostatic spray deposition (ESD)	777.1 (5Ag ⁻¹)	3000	99.3%	33
NiCo ₂ O ₄ @graphene	Hydrothermal	2300(1Ag ⁻¹)	5000	94.3%	34
NiCo ₂ O ₄ @graphene	Solvothemal	1060 (1.5Ag ⁻¹)	5000	93%	39
NiCo ₂ O ₄ @graphene	Coating	2173(6Ag ⁻¹)	14000	94%	40
NiCo ₂ O ₄ -rGO	Hydrothermal reaction	1222 (0.5Ag ⁻¹)	3000	97%	41
NiCo ₂ O ₄ -rGO	In situ assembling	1693 (1Ag ⁻¹)	2000	92%	42
NiCo ₂ O ₄ @graphene	Hydrothermal	1278(1Ag ⁻¹)	1000	95%	43
NiCo ₂ O ₄ -rGO	Solution method	1137.8 (1Ag ⁻¹)	1000	94%	44
NiCo ₂ O ₄ - carbon cloth	Hydrothermal	1843.3(1Ag ⁻¹)	4000	89%	47
NiCo ₂ O ₄ -rGO	Hydrothermal	1185 (2Ag ⁻¹)	10000	98 %	Present study