1	< Supporting information >
2	
3	One-Step Transformation of MnO₂ into MnO_{2-x}@Carbon
4	Nanostructures for High-Performance Supercapacitors using
5	Structure-Guided Combustion Waves
6	
7	
8	Jungho Shin [‡] , Dongjoon Shin [‡] , Hayoung Hwang, Taehan Yeo, Seonghyun Park and Wonjoon
9	Choi*
10	
11	
12	School of Mechanical Engineering, Korea University, Seoul, Korea, 136-701
13	
14	
15	
16	* Author to whom any correspondence should be addressed.
17	E-mail: <i>wojchoi@korea.ac.kr</i> , Phone: +82 2 3290 5951, Fax: +82 2 926 9290.
18	‡ These authors contributed equally to this work.
19	
20	Keywords: combustion synthesis; manganese oxide; phase transformation; carbon coating;
21	chemical synthesis; supercapacitor
22	

1 Calculation of specific capacitance from scan rate or current density

2

3 A specific capacitance was calculated from the CV curve by the subtraction of the capacitance

4 between bare MWCNT electrode and MnO_x/MWCNT electrode using the following equation:

$$C = \frac{\int_{V_1}^{V_2} \{I_v(MnO_x/MWCNT) - I_v(MWCNT)\} dV}{\Delta V \times v \times m (MnO_x)}$$

6 where *C* is the specific capacitance (F/g), I_v is the current at a specific scan rate during charge 7 and discharge cycling (A), ΔV is the applying voltage (V), *v* is the scan rate (V/s), and *m* is the 8 mass of deposited MnO_x (g).

9

10 A Specific capacitance was also obtained from the charge–discharge cycle (current density)11 using the following equation:

$$C = \frac{I \times \Delta t}{\Delta V \times m (MnO_x)}$$

where *C* is the specific capacitance (F/g), *I* is the current during charge and discharge cycling (A), Δt is the discharge time (s), ΔV is the potential window (V), and *m* is the mass of deposited MnO_x (g).

16

17

18

19

1

2 Cyclic voltammetry (CV) curves for Mn₂O₃/Mn₃O₄/MnO@C, MnO@C and MnO₂
3 electrodes.

4

5 All electrodes, fabricated by filtrating manganese oxide nanoparticles and nanostructures on
6 MWCNT current collector film were investigated through cyclic voltammetry (CV) (Figure S1).
7 CV curves were measured in 0.8 V potential window, at scan rates of 10, 25, 50, 100, 250 and
8 500 mV/s within Na₂SO₄ 1 M electrolyte.

9

Galvanostatic charge-discharge curves were measured at various current densities of 0.5, 1, 2, 5 and 10 A/g with the potential window between 0 and 0.8 V for $Mn_2O_3/Mn_3O_4/MnO@C$ (Figure S2a) and MnO@C (Figure S2b). Those charge-discharge curves showed good bilateral symmetry and linear energy quantity slopes at both charging and discharging periods. The highest specific capacitance based on the current density rate was 415.6 F/g at 0.5 A/g of current density. The larger current density resulted in the smaller specific capacitance for all electrodes (Figure S2c).

17

18

19

20

21

2 Figure S1. Cyclic voltammetry (CV) curves for (a) Mn₂O₃/Mn₃O₄/MnO@C, (b) MnO@C and (c)

10 **Figure S2.** Galvanostatic charge–discharge performances of (a) $Mn_2O_3/Mn_3O_4/MnO@C$ -based 11 electrode and (b) MnO@C-based electrode at different current densities. (c) Specific 12 capacitances of $Mn_2O_3/Mn_3O_4/MnO@C$ -based electrode and MnO@C-based electrode at 13 different current densities.

14

2 Figure S3. Scanning electron microscope (SEM) image for $Mn_2O_3/Mn_3O_4/MnO@C$, 3 MnO@C electrodes supercapaciators after 5000 times charge-discharge cycling. SEM 4 images of (a) $Mn_2O_3/Mn_3O_4/MnO@C$ and (b) MnO@C electrodes after 5000 times charge-5 discharge cycling. There are no change of morphology in nanostructure of $MnO_x@C$.

15 **Figure S4.** Pore size distribution of MnO_x@C, analyzed by ImageJ.