Supporting information for

One-pot synthesis of highly efficient graphene based threedimensional hybrid as catalyst supporting material for electrooxidation of liquid fuels

Demudu Babu Gorle^{1,2}, Manickam Anbu Kulandainathan¹

¹Electro Organic Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India

²Academy of Scientific & Innovative Research, Chennai, India

Fig. S1 XRD patterns of Graphite, Graphene, MWCNT, and Graphene-MWCNT.

Fig. S2 XPS spectra of O1s (a, b, c), and Pt4f (d, e, f) on Graphene/Pt, MWCNT/Pt, and Graphene-MWCNT/Pt.

Post XPS analysis of Graphene-MWCNT/Pt modified catalyst:

Figure S3 (a, b, c and d) shown the deconvolution of the C1s, O1s, Pt4f and S2p peaks of Pt decorated Graphene-MWCNT hybrid after recorded the cyclic voltammetry in 0.5 M H₂SO₄ + 1 M CH₃OH at a scan rate of 50 mV s⁻¹ for 5 cycles. The main peak at 284.8 eV corresponding to the graphitic structure. The peaks observed at 285.2 eV and 286.2 eV, corresponding to epoxide (C-O-C) groups. This is confirmed by the peak, which located at 531.2 eV in O1s spectrum. Another two peaks located approximately at 531.9 eV and 533.0 eV can be assigned to C-O-C and C-O-H groups. The deconvoluted Pt4f spectra represents two main peaks at 70.72 eV and 74.12 eV, corresponding to Pt 4f_{7/2} and 4f_{5/2}, respectively. As shown in the spectrum, two different Pt entities could be identified as metallic

Pt(0) with binding energies (BE) of 70.69 and 74.07 eV, PtO with BE of 71.50 and 75.01 eV, respectively. However, the PtO₂ peak is not observed may be reduced by the reverse scan in cyclic voltammogram. Interestingly, the S2p spectra centered three peaks with BE of 167.9 eV, 168.6 eV and 169.53 eV, assigned to be sulfite, sulfate and metallic sulfates, respectively. From this, some of the Pt present on catalyst is reacted with sulfuric acid and causes the decrease in catalytic activity for fuels electro-oxidation.

Fig. S3 XPS spectrum of (a) C1s, (b) O1s, (c) Pt4f, and (d) S2p of Graphene-MWCNT/Pt after recording cyclic voltammogram.

Fig. S4 FESEM images of (a) Graphene, (b) MWCNT, and (c) Graphene-MWCNT hybrid.

Fig. S5 Nitrogen adsorption - desorption isotherm curves of the (a) Graphene-MWCNT, and (b) Graphene-MWCNT/Pt material.

Fig. **S6** HRTEM images of (a) Graphene/Pt, (b) MWCNT/Pt, and (c) Graphene-MWCNT/Pt.

Fig. **S7** EDX analysis of the Graphene-MWCNT/Pt catalyst.

Fig. S8 (A) CVs and (B) EIS of 5.0 mM [Fe(CN)₆]^{3-/4-} (1:1) with 0.1 M KCl on bare GC, Graphene, MWCNT, Graphene-MWCNT, Graphene/Pt, MWCNT/Pt and Graphene-MWCNT/Pt electrodes.

Fig. S9 CVs of the GC, Graphene, MWCNT and Graphene-MWCNT electrodes in 0.5 M H_2SO_4 solution at scan rate of 50 mV s⁻¹.

Fig. S10 (A) CVs of the Graphene/Pt, MWCNT/Pt and Graphene-MWCNT/Pt electrodes in mixture of 0.5 M H_2SO_4 + 1 M CH₃OH solution at a scan rate of 50 mV s⁻¹; (B) bar plots of forward peak current densities for these three catalysts; (C) bar plots of current densities for these three catalysts at 0.6 V (vs Ag/AgCl) in LSV; (D) bar plots of current densities for these three catalysts at 100 s, 1000 s and 1800 s time intervals in Chronoamperometry.

Fig. S11 (A) CVs of the Graphene/Pt, MWCNT/Pt and Graphene-MWCNT/Pt electrodes in mixture of 0.5 M H_2SO_4 + 1 M HOCH₂CH₂OH solution at a scan rate of 50 mV s⁻¹; (B) bar plots of forward peak current densities for these three catalysts; (C) bar plots of current densities for these three catalysts at 0.6 V (vs Ag/AgCl) in LSV; (D) bar plots of current densities for these three catalysts at 100 s, 1000 s and 1800 s time intervals in Chronoamperometry.

Fig. S12 (A) CVs of the Graphene/Pt, MWCNT/Pt and Graphene-MWCNT/Pt electrodes in mixture of 0.5 M H_2SO_4 + 1 M HCHO solution at a scan rate of 50 mV s⁻¹; (B) bar plots of forward peak current densities for these three catalysts; (C) bar plots of current densities for these three catalysts at 0.6 V (vs Ag/AgCl) in LSV; (D) bar plots of current densities for these three catalysts at 100 s, 1000 s and 1800 s time intervals in Chronoamperometry.

Fig. S13 (A) CVs of the Graphene/Pt, MWCNT/Pt and Graphene-MWCNT/Pt electrodes in mixture of 0.5 M H_2SO_4 + 1 M HCOOH solution at a scan rate of 50 mV s⁻¹; (B) bar plots of forward peak current densities for these three catalysts; (C) bar plots of current densities for these three catalysts at 0.65 V (vs Ag/AgCl) in LSV; (D) bar plots of current densities for these three catalysts at 100 s, 1000 s and 1800 s time intervals in Chronoamperometry.

TABLES

Table S1. Raman spectroscopy parameters of Graphite, Graphene, MWCNT, Graphene-MWCNT, Graphene/Pt, MWCNT/Pt and Graphene-MWCNT/Pt.

	D (cm ⁻¹)	G (cm ⁻¹)	2D (cm ⁻¹)	D + G (cm ⁻¹)	I _D /I _G	I _{2D} /I _{D + G}
Graphite	1350	1573	2701	-	0.17	-
Graphene	1351	1585	2712	2946	0.63	2.19
MWCNT	1353	1584	2690	2939	1.12	1.58
Graphene- MWCNT	1353	1588	2703	2949	1.05	2.91
Graphene/Pt	1358	1570	2701	2931	0.85	2.81
MWCNT/Pt	1353	1584	2701	2939	1.17	3.57
Graphene- MWCNT/Pt	1353	1599	2701	2946	1.15	3.81

Table S2. Pore structure parameters of Graphene-MWCNT and Graphene-MWCNT/Pt.

Sample	BET surface area (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹)
Graphene-MWCNT	106	0.64
Graphene-MWCNT/Pt	113	1.12

Table S3. Catalytic performance of the Graphene-MWCNT/Pt catalyst compared with
 literature.

S.No	Electrode	Scan	Electrolyte	CH₃OH	(CH ₂ -OH) ₂	НСНО	НСООН	Ref
		rate	(mol.dm ⁻³)					
		(mV s ⁻¹)	H ₂ SO ₄ :	(mA mg ⁻¹)	(mA mg ⁻¹)	(mA mg ⁻¹)	(mA mg ⁻¹)	
			CH₃OH/					
			(CH ₂ OH) ₂ /HC					
			но/нсоон					
1	Ni ₅₀ /Pt/CNFs	50	0.5:1.0	10.9	-	-	-	1
				mA cm ⁻²				
2	Pt nanoflowers/	50	1.0/0.5:0.5	133.43	-	-	54.14	2
	RGO/CC							
3	PtPdPt/GN	100	1.0:0.5	25.63	-	-	-	3
4	graphene/Au@	50	2.0:0.5	124.00	-	-	-	4
	<u>Pt_{0.64}Ag_{0.36}</u>							
	NRs							
5	Pt/NG-800	20	1.0:1.0	135	-	-	-	5
6	Pt Ru/DWNTs	50	0.5:0.5	0.037	-	-	-	6
				mA/ cm ²				
7	PtRulr/C-Beef	50	0.5:0.5	5.1	-	-	-	7
				mA cm ⁻²				
8	Pt/G ₃ -(CN) ₇	20	1.0:2.0	15.7	-	-	-	8
				mA cm ⁻²				
9	Pt₅Ru₄Sn₁/C	50	0.5:2.0	-	87.5 mA	-	-	9
					cm ⁻²			
10	Pt-Ru/CNT	50	0.5:0.5	-	12.62	-	-	10
					mA.cm ⁻²			

11	Pt Pd/PPy	50	0.5:0.5	-	-	38.5	32.6	11
	CNT					mA.cm ⁻²	mA.cm ⁻²	
12	CC/Pt	50	0.1:0.75	-	-	65.57	49.43	12
						mA/cm ²	mA/cm²	
This	Graphene-	50	0.5 : 1.0	168.41	153.13	241.14	58.29	
work	MWCNT/Pt							

Notes and references

- (1) J. Chen, Q. Niu, G. Chen, J. Nie and G. Ma, *J. Phys. Chem. C*, 2017, **121**, 1463 1471.
- (2) Z. Yao, M. Zhu, F. Jiang, Y. Du, C. Wang and P. Yang, *J. Mater. Chem.*, 2012, **22**, 13707–13713.
- (3) W. Xie, F. Zhang, Z. Wang, M. Yang, J. Xia, R. Gui and Y. Xia, *Journal of Electroanalytical Chemistry*, 2016, **761**, 55–61.
- (4) L. Feng, G. Gao, P. Huang, X. Wang, C. Zhang, J. Zhang, S. Guo and D. Cui, *Nanoscale Research Letters*, 2011, **6**, 551–560.
- (5) L. –S. Zhang, X. –Q. Liang, W. –G. Song and Z. –Y. Wu, *Phys. Chem. Chem. Phys.*, 2010, **12**, 12055–12059.
- (6) W. Li, X. Wang, Z. Chen, M. Waje and Y. Yan, J. Phys. Chem. B, 2006, 110, 15353 15358.
- (7) H. Wang, H. Da, R. Wang and S. Ji, S. Afr. J. Chem., 2014, 67, 33 39.
- (8) H. Huang, S. Yang, R. Vajtai, X. Wang and P. M. Ajayan, *Adv. Mater.*, 2014, 26, 5160–5165.
- (9) H. J. Kim, S. M. Choi, S. Green, G. A. Tompsett, S. H. Lee, G. W. Huber and W. B. Kim, *Applied Catalysis B: Environmental*, 2011, **101**, 366–375.

- (10) V. Selvaraj, M. Vinoba and M. Alagar, *Journal of Colloid and Interface Science*, 2008, **322**, 537–544.
- (11) V. Selvaraj, M. Alagar and K. Sathish Kumar, *Applied Catalysis B: Environmental,* 2007, **75**, 129–138.
- (12) B. Habibi and N. Delnavaz, Int. J. Hydrogen Energy, 2010, **35**, 8831 8840.