## **Supporting Information**

## Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber

Jiaxing Song,<sup>a</sup> Leijing Liu,<sup>a</sup> Xiao-Feng Wang,<sup>b,\*</sup> Gang Chen,<sup>b</sup> Wenjing Tian,<sup>a,b,\*</sup> and Tsutomu Miyasaka<sup>c</sup>

<sup>a</sup> State Key Laboratory of Supramolecular Structure and Materials, Jilin University,

Changchun 130012, PR China

<sup>b</sup> Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of

Education, College of Physics, Jilin University, Changchun 130012, PR China

<sup>c</sup> Graduate School of Engineering, Toin University of Yokohama, 1614 Kurogane-cho,

Aoba, Yokohama, Kanagawa225-8503, Japan

\*E-mails: <u>xf\_wang@jlu.edu.cn(X.-F. Wang</u>) and <u>wjtian@jlu.edu.cn (W. Tian</u>)



**Figure S1.** (a) The XRD pattern of the ZnO nanoparticles and (b) the high magnification SEM micrograph of ITO/ZnO film.



Figure S2. The FT-IR spectrum of ZnO film processed at low temperature.



Figure S3. The chemical composition of  $Cs_6M$  from XPS results. (a) Cs 3d, (b) Pb 4f, (c) I 3d and (d) Br 3d core level spectra.



**Figure S4.** UV-vis-NIR absorption spectra of  $Cs_{10}M$  films obtained from the perovskite layers with different annealing temperature. The inset is the enlarged view of the absorption spectra at absorption edge.



**Figure S5.** X-ray diffraction patterns of (a)  $ITO/TiO_2/Cs_{10}M$  and (b)  $ITO/Cs_{10}M$  thin films obtained from the different annealing temperature.



**Figure S6.** The EDX patterns for the perovskite layer in the white phase and dark phase, respectively.



Figure S7. Time resolved photoluminescence (TrPL) spectra of  $Cs_6M$  films with and without remnant PbI<sub>2</sub> phase. The later was annealed at 85 °C for 4 min.



**Figure S8.** AFM images of the  $Cs_xM$  series with (a)  $Cs_2M$ , (b)  $Cs_6M$ , (c)  $Cs_{10}M$  and (d)  $Cs_{14}M$ , and corresponding RMS roughness are also presented therein.



**Figure S9.** The *J*-*V* characteristics of the devices based on the  $Cs_xM$  series measured at 100 mWcm<sup>-2</sup> AM 1.5G illumination under different scanning directions.

**Table S1.** The corresponding photovoltaic performance parameters for PSCs under different scanning directions in Figure S4.

|                   |          | V <sub>oc</sub> / V | $J_{sc}$ / mAcm <sup>-2</sup> | FF / % | PCE / % |
|-------------------|----------|---------------------|-------------------------------|--------|---------|
| Cs <sub>2</sub> M | forward  | 1.01                | 21.8                          | 61.9   | 13.6    |
|                   | backward | 1.09                | 22.0                          | 71.1   | 17.1    |

| Cs <sub>6</sub> M  | forward  | 1.03 | 22.7 | 65.9 | 15.4 |
|--------------------|----------|------|------|------|------|
|                    | backward | 1.12 | 22.8 | 72.8 | 18.6 |
| Cs <sub>10</sub> M | forward  | 1.02 | 22.4 | 59.9 | 13.7 |
|                    | backward | 1.12 | 22.5 | 72.0 | 18.1 |
| Cs <sub>14</sub> M | forward  | 1.0  | 21.6 | 50.9 | 11.0 |
|                    | backward | 1.10 | 21.7 | 68.2 | 16.3 |



**Figure S10.** *J-V* characteristic of the best-performing ITO/ZnO/MAPbI<sub>3</sub>/spiro-OMeTAD/Ag device.



**Figure S11.** A structurally graphical image displaying the variation when using the triplecation recipe as an alternative to MAPbI<sub>3</sub> on low-temperature processed ZnO.



**Figure S12.** *J-V* characteristic of the best-performing  $ITO/TiO_2/Cs_6M/spiro-OMeTAD/Ag$  device.



**Figure S13.** Durability of the ZnO-based  $Cs_6M$ , MAPbI<sub>3</sub> and FAPbI<sub>3</sub> PSC devices stored in the ambient condition.