Supporting Information

NaCl Gradient-Crystalling-Induced Formation of Micro-structured Ribbon-like Graphene Based 3D-Graphene Film for High Performance Flexible/Transparent Supercapacitors

Na Li^{*, \dagger} , Xuankai Huang^{\dagger} , Haiyan Zhang^{\dagger} , Zhicong Shi $^{+}$, Yunyong Li^{\dagger} , Chengxin Wang^{*, \bot}

† School of Material and Energy, Guangdong University of Technology, Guangzhou,

510006, P. R. China

⊥ State key laboratory of optoelectronic materials and technologies, School of Material Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China

* Correspondence and requests for materials should be addressed to N.L. e-mail: <u>lina150907@gdut.edu.cn</u> and C.X.W. e-mail: wchengx@mail.sysu.edu.cn

Calculation method

(1) Specific capacitances derived from galvanostatic charge/discharge tests are calculated from: $C_{specific} = \frac{I}{M\bar{\nu}}$

Where $C_{specific}$ is specific capacitance for a device in F/g, F/cm² or F/cm³, I is the discharge current in A, and \bar{v} is the slope of the discharge curve after the IR drop.

(2) The electrochemical performance shown in the Ragone plot was measured under the same dynamic condition from the C-V datas. The specific energy density (E) and power density (P) of the device were obtained from the following formula:

$$E = \frac{1}{2} \times C_{specific} \times \frac{(\Delta V)^2}{3600} \qquad P = \frac{E}{\Delta t} \times 3600$$

Where E is the energy density in Wh Kg⁻¹ or Wh cm⁻³), C_{specific} is the mass or volumetric stack capacitance obtained above and ΔV is the discharge voltage range (in V). P is the energy density in WKg⁻¹ or W cm⁻³, Δt is the discharge time (in S).

(3) Equivalent series resistance (ESR (Ω) is the internal resistance of the device) was obtained by the following equation: $ESR = \frac{iR_{drop}}{2l}$

Figure S1: SEM micrograph of the nucleated graphene ribbons on NaCl template after the DC bias and heater turned off (before the growth began).

Figure S2: Schematic of the growth directions of the graphene ribbons and the small graphene leaves.

Figure S3: AFM images and a height profile were employed to identify the thickness of the ribbon. The sample applied was taken out of the system before the growth of the small-leave microstructures begin by controlling the growth time.

Figure S4: CV curves of the device at different stretching states. The insets are photographs of the RAGR-GF/PDMS at releasing and stretching states.

Figure S5: Ragone plot of the device calculated based on RAGR-GF/electrolyte and the total device. The volumetric energies as a function of power density are compared with previously reported flexible transparent supercapacitors.

Table S1: Comparison results among transparent/nontransparent supercapacitors.

Material	Transmittance, flexibility	Specific capacitance	Energy density	Power density	Ref.
				12 0VW/W (2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
MWCN1 film	Transparent/flexible (62%)	146µF/cm2(based on electrode)	12.5 wh/Kg (based on electrode)	13.9KW/Kg (based on electrode materials)	1
PANI&MWCN T	Transparent/flexible (60%)	300F/g (based on electrode)	_	_	2
MWCNT film	Transparent/flexible (75%)	7.3F/g (for device)	2.4Wh/Kg (based on electrode)	0.9Kw/Kg (based on electrode)	3
PANI&SWCNT	Transparent/flexible (55%)	55F/g (for device)	_		4
nano-energied carbon films	Transparent/flexible (71%)	409µF/cm2 (for device)	47µWh/cm3 (for electrolyte/material)	19mW/cm ³ (based on electrolyte /)	5
grpahene film	Transparent/flexible (67%)	12.4µF/cm2 (for device)	2.94Wh/Kg (based on electrode)	438.6KW/Kg (based on electrode)	6
CVD graphene	Transparent/stretchable (50-60%)	5.8µF/cm2 (7.6F/g)	-	_	7
CVD graphene	Transparent/flexible	80.7µF/cm2 (for device)	2.5 mWh/cm3(for device)	495W/cm ³ (for device)	8
CVD grapehene	Transparent/flexible	80µF/cm2 (for device)	—	-	9
RGO film	Transparent/flexible	394µF/cm2 (for device)s	_	_	9
CVD graphene	Transparent/stretchable	4.27µF/cm2 (for device)	0.20 nWh/ cm2	36.48 µW/cm ²	10
FFT-GP	Transparent/flexible (electrode79%)	3.3mF/cm ² (for device)	430µWh/cm ³ (for electrolyte/material)	190mW/cm ³ (for electrolyte/materials)	11
RAGR-GF	Transparent/flexible (electrode75%)	4.88 mF/cm ² (for device)	605µWh/cm ³ (for,electrolyte/material)	817.3 mW/cm ³ (for electrolyte/materials)	Our report
SFT-GF	Transparent/flexible (device 51.6%)	4.21 mF/cm ² (for device)	552.3 µWh/cm ³	561.9 mW/cm ³	12
onion- likecarbon	Nontransparent/flexible	1.7mF/cm ² (for device)	10 mWh/cm ³ (for device)	1Kw/cm ³ (for device)	13
Fe ₂ O ₃ //MnO ₂	Nontransparent/flexible	1.5F/cm ³	0.55 mWh/cm ³ (for device)	150 mW/cm ³ (for device)	14
NPG-PPy//NPG-PPy	Nontransparent/flexible	30 F/cm ³	2.8 mWh/cm ³ (for device)	56.7 W/cm ³ (for device)	15
MnO2//carbon fiber	Nontransparent/flexible	10 F/cm ³	5 mWh/cm ³ (for device)	929 mW/cm ³	16
WO3@MoO3//PANI	Nontransparent/flexible	216mF/cm ²	1.9 mWh/cm ³ (for device)	730 mW/cm ³	17

Reference:

(1) Niu, Z. Q.; Zhou, W. Y.; Chen, J.; Feng, G. X.; Li, H.; Hu, Y. S.; Ma, W. J.; Dong,
H. B.; Li, J. Z.; Xie, S. S. A Repeated Halving Approach to Fabricate Ultrathin SingleWalled Carbon Nanotube Films for Transparent Supercapacitors. *Small* 2013, 9, 518-524.

(2) Lin, H. J.; Li, L.; Ren, J.; Cai, Z. B.; Qiu, L. B.; Yang, Z. B.; Peng, H. S. Conducting Polymer Composite Film Incorporated with Aligned Carbon Nanotubes for Transparent, Flexible and Efficient Supercapacitor. *Sci Rep-Uk* 2013, 3.

(3) Chen, T.; Peng, H. S.; Durstock, M.; Dai, L. M. High-Performance Transparent and Stretchable All-Solid Supercapacitors Based on Highly Aligned Carbon Nanotube Sheets. *Sci Rep-Uk* 2014, 4.

(4) Choi, B. G.; Chang, S. J.; Kang, H. W.; Park, C. P.; Kim, H. J.; Hong, W. H.; Lee,
S.; Huh, Y. S. High Performance of a Solid-State Flexible Asymmetric Supercapacitor
Based on Graphene Films. *Nanoscale* 2012, 4, 4983-4988.

(5) Jung, H. Y.; Karimi, M. B.; Hahm, M. G.; Ajayan, P. M.; Jung, Y. J. Transparent, Flexible Supercapacitors From Nano-Engineered Carbon Films. *Sci Rep-Uk* 2012, 2.

(6) Gao, Y.; Zhou, Y. S.; Xiong, W.; Jiang, L. J.; Mahjouri-samani, M.; Thirugnanam,
P.; Huang, X.; Wang, M. M.; Jiang, L.; Lu, Y. F. Transparent, Flexible, and Solid-State
Supercapacitors Based on Graphene Electrodes. *Apl. Mater.* 2013, 1.

(7) Chen, T.; Xue, Y. H.; Roy, A. K.; Dai, L. M. Transparent and Stretchable High-Performance Supercapacitors Based on Wrinkled Graphene Electrodes. *Acs Nano* 2014, 8, 1039-1046.

(8) Wu, Z. S.; Parvez, K.; Feng, X. L.; Mullen, K. Graphene-Based In-Plane Micro-Supercapacitors with High Power and Energy Densities. *Nat. Commun.* 2013, 4.

(9) Yoo, J. J.; Balakrishnan, K.; Huang, J. S.; Meunier, V.; Sumpter, B. G.; Srivastava,
A.; Conway, M.; Reddy, A. L. M.; Yu, J.; Vajtai, R.; Ajayan, P. M. Ultrathin Planar
Graphene Supercapacitors. *Nano Lett.* 2011, 11, 1423-1427.

(10) Xu, P.; Kang, J.; Choi, J. B.; Suhr, J.; Yu, J. Y.; Li, F. X.; Byun, J. H.; Kim, B. S.;
Chou, T. W. Laminated Ultrathin Chemical Vapor Deposition Graphene Films Based
Stretchable and Transparent High-Rate Supercapacitor. *ACS Nano* 2014, 8, 9437-9445.

(11) Li, N.; Yang, G. Z.; Sun, Y.; Song, H. W.; Cui, H.; Yang, G. W.; Wang, C. X. Free-Standing and Transparent Graphene Membrane of Polyhedron Box-Shaped Basic Building Units Directly Grown Using a NaCl Template for Flexible Transparent and Stretchable Solid-State Supercapacitors. *Nano Lett.* 2015, 15, 3195-3203.

(12) Na Li, Xuankai Huang, Haiyan Zhang, Yunyong Li, and Chengxin Wang, Transparent and Self-Supporting Graphene Films with Wrinkled-Graphene-Wall-Assembled Opening Polyhedron Building Blocks for High Performance Flexible/Transparent Supercapacitors. ACS Appl. Mater. Inter.

(13) Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna,
P. L.; Simon, P. Ultrahigh-Power Micrometre-Sized Supercapacitors Based on Onion-Like Carbon. *Nat. Nanotechnol.* 2010, 5, 651-654.

(14) Yang, P. H.; Ding, Y.; Lin, Z. Y.; Chen, Z. W.; Li, Y. Z.; Qiang, P. F.; Ebrahimi, M.;
Mai, W. J.; Wong, C. P.; Wang, Z. L. Low-Cost High-Performance Solid-State
Asymmetric Supercapacitors Based on MnO₂ Nanowires and Fe₂O₃ Nanotubes. *Nano Lett.* 2014, 14, 731-736.

(15) Meng, F. H.; Ding, Y. Sub-Micrometer-Thick All-Solid-State Supercapacitors with High Power and Energy Densities. *Adv. Mater.* 2011, 23, 4098-4015.

(16)Yu, D. S.; Goh, K. L.; Zhang, Q.; Wei, L.; Wang, H.; Jiang, W. C.; Chen, Y. Controlled Functionalization of Carbonaceous Fibers for Asymmetric Solid-State Micro-Supercapacitors with High Volumetric Energy Density. *Adv. Mater.* 2014, 26, 6790-6797.

(17)Xiao, X.; Ding, T. P.; Yuan, L. Y.; Shen, Y. Q.; Zhong, Q.; Zhang, X. H.; Cao, Y. Z.; Hu, B.; Zhai, T.; Gong, L.; Chen, J.; Tong, Y. X.; Zhou, J.; Wang, Z. L. WO₃-x/MoO₃x Core/Shell Nanowires on Carbon Fabric as an Anode for All-Solid-State Asymmetric Supercapacitors. *Adv. Energy Mater.* 2012, 2, 1328-1332.