Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary information BCN Network-Encapsulated Multiple Phases of Molybdenum Carbide for Efficient Hydrogen Evolution Reaction in Acidic and Alkaline Media

Mohsin Ali Raza Anjum, Min Hee Lee and Jae Sung Lee*

School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, South Korea

This file includes supplementary Figures S1-S20, and Tables S1-S6.

 Table S1. Composition of starting materials for preparation of multiple phase of molybdenum carbides

Name	Imidazole	Boric acid	MoCl ₅
<i>o</i> -β-Mo ₂ C	5 mmol	NIL	1 mmol
o-α-Mo₂C@BCN	5 mmol	1 mmol	1 mmol
<i>h</i> -η-MoC@BCN	5 mmol	2 mmol	1 mmol
<i>h</i> -β-Mo₂C@BCN	5 mmol	3 mmol	1 mmol
<i>c</i> -α-Mo₂C@BCN	5 mmol	4 mmol	1 mmol
<i>o</i> -β-Mo₂C@BCN	5 mmol	5 mmol	1 mmol

Imidazole = $(CH)_2N(NH)CH$: Boric acid = H_3BO_3

ARTICLE

 Table S2. Information of multiple phases of as synthesized molybdenum carbides

Name	Phase	Crystal system	Space group	Reference code	Crystal view
<i>ο</i> -α-Μο ₂ C@BCN	α-Mo₂C like Ni₂C	Orthorhombic	Pbcn	01-071-0242	
					J. Phys.: Condens. Matter 2010,22, 445503
<i>h-</i> η-MoC@BCN	η-ΜοϹ	Hexagonal	P63/mmc	01-089-4305	
					Angew. Chem, 2014, 126, 6525
<i>h-</i> β-Mo₂C@BCN	β-Mo₂C	Hexagonal	P63/mmc	03-065-8364	
					Angew. Chem, 2014, 126, 6525
<i>c</i> -α-MoC _{1-x} @BCN	α-MoC _{1-x} &	Cubic	Fm3m	03-065-0280	(00 (0)
	α-Mo ₂ C	Orthorhombic		01-071-0242	
					Phys. Chem. Chem. Phys., 2013, 15, 1261
<i>o</i> -β-Mo₂C@BCN	β-Mo₂C	Orthorhombic	Pca21	01-077-0720	
					Phys. Chem. Chem. Phys., 2013, 15, 1261

 Table S3. Surface composition of each phase of molybdenum carbides determined by XPS

Sample	Mo [At. %]	C [At. %]	N [At. %]	B [At. %]	O [At. %]
<i>o</i> -α-Mo₂C@BCN	10.44	60.81	17.37	1.04	10.34
<i>h</i> -η-MoC@BCN	10.39	55.93	24.27	1.23	8.18
h-β-Mo₂C@BCN	11.03	59.09	21.17	1.60	7.11
<i>c</i> -α-Mo ₂ C@BCN	11.3	60.02	18.7	3.15	6.83
o-β-Mo₂C@BCN	13.50	60.49	12.84	4.05	9.12

Journal Name

Table S 4. Comparison of HER performance in acid (0.5M H₂SO₄) media with other molybdenum carbides based electrocatalysts

Catalyst	Onset (mV)	ղ1 (mV)	η10 (mV)	Tafel Slope (mV/dec)	J _o (mA/cm²)	Electrolyte
<i>c</i> -α-MoC _{1-x} @BCN	20	25	124	47	0.124	0.5M H ₂ SO ₄
				167	1.505	
h-β-Mo₂C@BCN	20	30	140	103	0.392	0.5M H ₂ SO ₄
<i>ο</i> -β-Mo₂C@BCN	48	76	168	80	0.109	0.5M H ₂ SO ₄
<i>һ</i> -ŋ-МоС@ВСN	45	101	182	67	0.006	0.5M H ₂ SO ₄
<i>ο</i> -α-Μο ₂ C@BCN	40	120	195	73	0.011	0.5M H ₂ SO ₄
Mo ₂ C-carbon nanocomposites ¹		160	260	110		0.5M H ₂ SO ₄
Mo _{0.06} W _{1.94} C/CB ²		150	220			0.5M H ₂ SO ₄
Mo ₂ C/Graphitic Carbon Sheets ³	120	160	210	62.6	0.0125	0.5M H ₂ SO ₄
Mo ₂ C ⁴		155	210	56	0.0013	0.5M H ₂ SO ₄
Mo₂C NWs⁵	110	115	200	55.8		0.5M H ₂ SO ₄
Mo₂C nanoparticles ⁶		150	198	56		0.5M H ₂ SO ₄
MoS ₂ /Mo ₂ C embedded N-CNT ⁷	145		190	69		0.5M H ₂ SO ₄
Mo1Soy(β -Mo ₂ C and γ -Mo ₂ N) ⁸		120	177	66.4	0.037	0.1M HClO ₄
MoS _x @Mo₂C ⁹	120	130	170	52	0.131	0.5M H ₂ SO ₄
Mo₂C on CNT ¹⁰		63	152	55.2	0.014	0.1M HClO ₄
Ni-Mo ₂ C nano-rod ¹¹	80	100	150	58	0.033	0.5M H ₂ SO ₄
3D Mo _x C/Ni network ¹²		44	150	49		0.5M H ₂ SO ₄
Mo ₂ C–NCNT ¹³	65	72	147	71	0.114	0.5M H ₂ SO ₄
MoCN ¹⁴	50	55	145	46		0.5M H ₂ SO ₄
Mesoporous $\eta\text{-MoC}_x$ nano-octahedrons^{15}		87	142	53		0.5M H ₂ SO ₄
Mo ₂ C, CNT-Graphene composite ¹⁶	62	90	130	58	0.062	0.5M H ₂ SO ₄
Mo ₂ C on RGO ¹⁷	70	91	130	57.3		0.5M H ₂ SO ₄
nanoporous Mo ₂ C nanowires ¹⁸		70	130	53		0.5M H ₂ SO ₄
Mo ₂ C@NC ¹⁹	-	60	124	60	0.096	0.5M H ₂ SO ₄
NS-doped Mo ₂ C ²⁰	46	56	86	47	0.038	0.5M H ₂ SO ₄
Mo _x C-Ni@NCV ²¹	20	22	75	45		0.5M H ₂ SO ₄
β- Mo ₂ C ²²		205		120	0.01729	0.5M H ₂ SO ₄

ARTICLE

Table S5. Comparison of HER performance of multiple phases of molybdenum carbides encapsulated by BCN with other Mo₂C-based electrocatalysts in alkaline media

Catalyst	Onset (mV)	η1 (mV)	η10 (mV)	Tafel Slope (mV/dec)	J₀ (mA/cm²)	Electrolyte
h-β-Mo₂C@BCN		45	92	52.8	0.162	1.0M NaOH
<i>һ</i> -ղ-Мо₂С@ВСN		65	116	53.4	0.063	1.0M NaOH
<i>ο</i> -α-Mo₂C@BCN		63	119	58.5	0.0861	1.0M NaOH
<i>o</i> -β-Mo₂C@BCN		69	126	60	0.075	1.0M NaOH
<i>c</i> -α-MoC _{1-x} @BCN		73	141	73	0.113	1.0M NaOH
h-β-Mo₂C@BCN		46	98	55	0.162	1.0M KOH
<i>h</i> -η-Мо₂С@ВСN		52	106	55.4	0.120	1.0M KOH
<i>o</i> -α-Mo₂C@BCN		49	111	68	0.218	1.0M KOH
<i>o</i> -β-Mo₂C@BCN		56	110	59	0.127	1.0M KOH
<i>c</i> -α-MoC _{1-x} @BCN		62	154	98	0.225	1.0M KOH
Dual-doped Co@BCN ²³		70	183	73.2		1.0M KOH
Mo ₂ C–NCNT ¹³	190	195	257			1.0M KOH
Mo ₂ C ²⁴		130	190	54	0.0038	1.0M KOH
Mo ₂ C nanoparticles ⁶		110	176	58		1.0M KOH
Mesoporous η-MoC _x nano- octahedrons ¹⁵		92	151	59		1.0M KOH
Mo ₂ C nano-rod Ni impregnated Mo ₂ C nano-rod ¹¹		48	130	49	0.27	1.0M KOH
Mo ₂ C@NC ¹⁹	-	10	60			1.0M KOH

Table S6. Electrochemical active surface area (ECSA) and specific capacitance of all composites

$A_{ECSA} = \frac{Specific \ Capacitance}{40 \ \mu F.cm^{-2} \ per \ cm_{ECSA}^{2}} \frac{Ref. ^{25}}{25}$									
Sample	С	A_{ECSA}	С	A_{ECSA}	С	A_{ECSA}			
	(μF/cm²)	(CIMECSA)	(µF/cm²)	(CIMECSA)	(µF/cm²)	(CIMECSA)			
	0.5M H ₂ SO ₄		1.0M	NaOH	1.0M KOH				
<i>o</i> -α-Mo ₂ C@BCN	13910	348	14090	352	17800	445			
<i>h</i> -η-Мо₂С@ВСN	4170	104	10340	258	6410	160			
h-β-Mo₂C@BCN	5610	140	5910	148	4990	125			
<i>c</i> -α-MoC _{1-x} @BCN	9280	232	6600	165	7090	177			
<i>o</i> -β-Mo ₂ C@BCN	2430	61	401.82	10	1500	37.5			

Figure S1. (A) Color change with reaction time and collected organometallic complex precipitate. (B) XRD pattern of a Mo-Im-Borate organometallic complex

20

30

2θ (°)

40

50

60

10

Journal Name

Figure S2. XRD pattern of c- α -MoC_{1-x} synthesized at 750 and 900 0 C (JCPDS 03-065-0280)

Figure S3. XRD pattern of h- η -MoC synthesized at 800 and 900 0 C (JCPDS 01-089-4305)

Figure S4. FESEM images and XPS survey. (a) Orthorhombic α -Mo₂C@BCN. (b) Hexagonal η -MoC@BCN.

(c) Hexagonal β -Mo₂C@BCN. (d) Cubic α –MoC_{1-x}@BCN. (e) Orthorhombic β -Mo₂C@BCN. (f) XPS survey

of multiple phases of molybdenum carbides

Figure S5. TEM images of o- α -Mo₂C@BCN (a), c- α -MoC_{1-x}@BCN (b), o- α -Mo₂C@BCN (c) and c- α -MoC_{1-x}@BCN (b), o- α -Mo₂C@BCN (c) and c- α -MoC_{1-x}@BCN (b), o- α -Mo₂C@BCN (c) and c- α -MoC_{1-x}@BCN (b), o- α -Mo₂C@BCN (c) and c- α -MoC_{1-x}@BCN (b), o- α -Mo₂C@BCN (c) and c- α -MoC_{1-x}@BCN (b), o- α -Mo₂C@BCN (c) and c- α -MoC_{1-x}@BCN (b), o- α -Mo₂C@BCN (c) and c- α -MoC_{1-x}@BCN (b), o- α -Mo₂C@BCN (c) and c- α -MoC_{1-x}@BCN (b), o- α -Mo₂C@BCN (c) and c- α -MoC_{1-x}@BCN (c) and c- α -MOC_{1-x}BCN (c) and c- α -MOC_{1-x}BCN (c) and c- α -MOC_{1-x}BCN (c

 $_{x}$ @BCN (**d**). Insets are low magnification (**a**,**b**) and Forward Fourier Transform (FFT) images.

Figure S6. EDX elemental mapping of (a) $o-\alpha-Mo_2C@BCN$ (inset combined image of elemental mapping) and (b) EDS-SEM spectrum with composition in Table.

Figure S7. EDX elemental mapping of (a) h-η-MoC@BCN (inset combined image of elemental mapping)

and (b) EDS-SEM spectrum with composition in Table.

Journal Name

Figure S8. EDX elemental mapping of (a) $h-\beta-Mo_2C@BCN$ (inset combined image of elemental mapping) and (b) EDS-SEM spectrum with composition in Table.

Figure S9. EDX elemental mapping of (a) $c-\alpha-MoC_{1-x}@BCN$ (inset combined image of elemental mapping)

and (b) EDS-SEM spectrum with composition in Table.

Figure S10. EDX elemental mapping of (a) $o-\beta-Mo_2C@BCN$ (inset combined image of elemental mapping) and (b) EDS-SEM spectrum with composition in Table.

Figure S11. X-ray photoelectron spectroscopy (XPS) spectra: a) Orthorhombic α -Mo₂C@BCN; b) Hexagonal η-MoC@BCN; c) Hexagonal β-Mo₂C@BCN; d) Orthorhombic β-Mo₂C@BCN.

Figure S12. XPS spectra (without background) and fitted peaks of C1s, B1s and N1s for (a) orthorhombic α -Mo₂C@BCN, (b) hexagonal η -MoC@BCN, (c) hexagonal β -Mo₂C@BCN, and (d) orthorhombic β -Mo₂C@BCN

Figure S13. Nitrogen adsorption-desorption isotherms of (**a**) hexagonal β -Mo₂C@BCN and (**b**) cubic α -MoC_{1-x}@BCN. Insets show pore size distributions.

Figure S14. Tafel plots in of low current densities region of all hybrid electrocatalysts in $0.5M H_2SO_4$ (**a**), 1.0M KOH (**b**) and 1.0M NaOH (**c**). The onset overvoltage is determined by the potential when the Tafel plots begin to deviate from the linear region as indicated by the arrow.

ARTICLE

Figure S15. Out-class HER performance of hybrid catalysts than Pt/C at higher current densities in alkaline media

Figure S16. Half of current density differences ($\Delta j = J_a - J_c$) plotted against scan rates in (**a**) 0.5M H₂SO₄, (**b**)

1.0M NaOH and (c) 1.0M KOH. Specific capacitances (μ f cm⁻²) are equivalent to the linear slopes of each

curve which is used to calculate ECSA

Figure S17. Electrochemical impedance spectroscopy (EIS) analysis for all composites: (**a**) for o- α -Mo₂C@BCN, (**b**) h- η -Mo₂C@BCN, (**c**) h- β -Mo₂C@BCN, (**d**) c- α -MoC_{1-x}@BCN and (**e**) o- β -Mo₂C@BCN in 0.5M H₂SO₄, 1.0M KOH and 1.0M NaOH, respectively

16 | J. Name., 2012, 00, 1-3

Figure S18. Polarization curves after continuous potential CV cycles up to 2000 of (**a-b**) o- α -Mo₂C@BCN

and (c-d) h-η-Mo₂C@BCN in acidic and alkaline solutions, respectively.

Figure S19. XRD pattern of N-doped Molybdenum carbide without BCN network, particle size distribution (inset)

Figure S20. HER activity of N-doped molybdenum carbide without BCN protection in acidic and basic

media. (a) $0.5M H_2SO_4$ and (b) 1.0M NaOH

References

- 1 N. S. Alhajri, D. H. Anjum and K. Takanabe, J. Mater. Chem. A, 2014, 2, 10548-10556.
- 2 S. T. Hunt, T. Nimmanwudipong and Y. Román-Leshkov, Angew. Chem. Int. Ed., 2014, 53, 5131-5136.
- 3 W. Cui, N. Cheng, Q. Liu, C. Ge, A. M. Asiri and X. Sun, ACS Catal., 2014, 4, 2658-2661.
- 4 M. Boride, Angew. Chem. Int. Ed., 2012, 51, 12703-12706.
- 5 C. Ge, P. Jiang, W. Cui, Z. Pu, Z. Xing, A. M. Asiri, A. Y. Obaid, X. Sun and J. Tian, *Electrochim. Acta*, 2014, 134, 182-186.
- 6 L. Ma, L. R. L. Ting, V. Molinari, C. Giordano and B. S. Yeo, J. Mater. Chem. A, 2015, **3**, 8361-8368.
- 7 K. Zhang, Y. Zhao, S. Zhang, H. Yu, Y. Chen, P. Gao and C. Zhu, J. Mater. Chem. A, 2014, 2, 18715-18719.
- 8 W.-F. Chen, S. Iyer, S. Iyer, K. Sasaki, C.-H. Wang, Y. Zhu, J. T. Muckerman and E. Fujita, Energy Environ. Sci., 2013, 6, 1818-1826.
- 9 C. Tang, W. Wang, A. Sun, C. Qi, D. Zhang, Z. Wu and D. Wang, ACS Catal., 2015, 5, 6956-6963.
- 10 W.-F. Chen, C.-H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. Muckerman, Y. Zhu and R. Adzic, *Energy Environ. Sci.*, 2013, 6, 943-951.
- 11 P. Xiao, Y. Yan, X. Ge, Z. Liu, J.-Y. Wang and X. Wang, Appl. Catal. B: Environ., 2014, 154, 232-237.
- 12 J. Zhang, X. Meng, J. Zhao and Z. Zhu, *ChemCatChem*, 2014, **6**, 2059-2064.
- 13 K. Zhang, Y. Zhao, D. Fu and Y. Chen, J. Mater. Chem. A, 2015, 3, 5783-5788.
- 14 Y. Zhao, K. Kamiya, K. Hashimoto and S. Nakanishi, J. Am. Chem. Soc., 2014, 137, 110-113.
- 15 H. B. Wu, B. Y. Xia, L. Yu, X.-Y. Yu and X. W. D. Lou, Nat. Commun., 2015, 6.
- 16 D. H. Youn, S. Han, J. Y. Kim, J. Y. Kim, H. Park, S. H. Choi and J. S. Lee, ACS Nano, 2014, 8, 5164-5173.
- 17 L. F. Pan, Y. H. Li, S. Yang, P. F. Liu, M. Q. Yu and H. G. Yang, Chem. Commun., 2014, 50, 13135-13137.
- 18 L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang, M. D. Scanlon, X. Hu, Y. Tang, B. Liu and H. H. Girault, *Energy. Environ. Sci.*, 2014, 7, 387-392.
- 19 Y. Liu, G. Yu, G. D. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, Angew. Chem. Int. Ed., 2015, 54, 10752-10757.
- 20 H. Ang, H. T. Tan, Z. M. Luo, Y. Zhang, Y. Y. Guo, G. Guo, H. Zhang and Q. Yan, Small, 2015, 11, 6278-6284.
- 21 S. Wang, J. Wang, M. Zhu, X. Bao, B. Xiao, D. Su, H. Li and Y. Wang, J. Am. Chem. Soc., 2015, 137, 15753-15759.
- 22 C. Wan, Y. N. Regmi and B. M. Leonard, Angew. Chem., 2014, 126, 6525-6528.
- 23 H. Zhang, Z. Ma, J. Duan, H. Liu, G. Liu, T. Wang, K. Chang, M. Li, L. Shi and X. Meng, ACS Nano, 2015.
- 24 H. Vrubel and X. Hu, Angew. Chem., 2012, **124**, 12875-12878.
- 25 J. Kibsgaard and T. F. Jaramillo, Angew. Chem. Int. Ed., 2014, 53, 14433-14437.