Electronic Supplementary Information

Uniformly-distributed Sb nanoparticles in ionic liquid-derived nitrogen-enriched carbon for highly reversible sodium storage

Xin Xu,^a Zhifeng Dou,^b Erlong Gu,^a Ling Si,^a Xiaosi Zhou*^a and Jianchun Bao*^a

^{*a*} Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China

*E-mail: <u>zhouxiaosi@njnu.edu.cn</u>

*E-mail: <u>baojianchun@njnu.edu.cn</u>

^b State Key Lab of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, P. R. China

Fig. S1 Digital photographs of (a) a mixture prepared by mixing 3 mL of $SbCl_3$ /methanol (80 mg mL⁻¹) solution and 3 mL of Emim-dca/methanol (100 mg mL⁻¹) solution and the mixture after depositing for (b) 1 h and (c) 12 h.

Fig. S2 (a) SEM image and (b–e) corresponding EDX spectrum and C, N, and Sb elemental mapping images of Sb@NC.

Fig. S3 Sb L₃-edge XANES of Sb and Sb@NC.

Fig. S4 TGA of L-Sb@NC, Sb@NC, H-Sb@NC, Sb@SC, Sb@PNC, and Sb nanocrystals under an air flow with a temperature ramp of 10 °C min⁻¹ from room temperature to 900 °C. From the TGA curve of Sb nanocrystals, we can clearly see that the weight of Sb nanocrystals remains almost unchanged. This is mainly because Sb nanocrystals experience weight gain due to oxidation and suffer from weight loss owing to heat evaporation at the same time. Therefore, when we calculate the Sb contents in the samples through TGA, only the combustion loss of carbon matrix is taken into account and the weight variation of Sb is ignored.

Fig. S5 (a) SEM image, (b) high-magnification SEM image, (c) TEM image, and (d) HRTEM image of L-Sb@NC.

Fig. S6 (a) SEM image, (b) high-magnification SEM image, (c) TEM image, and (d) HRTEM image of H-Sb@NC.

Fig. S7 (a) The effect of FEC on the electrochemical performance of Sb@NC using 1 M NaClO₄ in EC/DEC (1:1 v/v). (b) The effect of FEC on the electrochemical performance of Sb@NC using 1 M NaClO₄ in PC. (c) The effect of FEC on the electrochemical performance of Sb@NC using 0.6 M NaPF₆ in EC/DEC (1:1 v/v). (d) The effect of FEC on the electrochemical performance of Sb@NC using 1 M NaPF₆ in PC. All these investigations were conducted between 0.01 and 2 V at a current density of 100 mA g⁻¹.

Fig. S8 (a) SEM image, (b) high-magnification SEM image, (c) TEM image, and (d) HRTEM image of NC.

Fig. S9 Electrochemical properties of the NC anode for sodium-ion batteries. (a) The galvanostatic discharge–charge profiles of the initial three cycles for the NC electrode between 0.01 and 2 V at a current density of 100 mA g^{-1} . (b) Discharge–charge capacities for the first 300 cycles of the NC electrode in the voltage range of 0.01–2 V at 100 mA g^{-1} .

Fig. S10 The influence of FEC in different electrolytes on the electrochemical properties of Sb@NC. The discharge capacities of the 200th cycle were used for comparison. All these battery tests were performed between 0.01 and 2 V at a current density of 100 mA g^{-1} .

Fig. S11 Galvanostatic discharge–charge profiles of the Sb@NC electrode plotted for the 1st, 2nd, and 5th cycles between 0.01 and 2 V at a current density of 100 mA g^{-1} .

Fig. S12 (a) TEM image and (b) HRTEM image of Sb nanocrystals.

Fig. S13 (a) SEM image, (b) high-magnification SEM image, (c) TEM image, and (d) HRTEM image of Sb@SC.

Fig. S14 (a) SEM image, (b) high-magnification SEM image, (c) TEM image, and (d) HRTEM image of Sb@PNC.

Fig. S15 CV curves of the Sb@NC electrode at different scan rates.

Fig. S16 Kinetics and quantitative analysis of sodium storage mechanism. (a) Capacitive (red) and diffusion-dominated (blue) contribution to sodium storage of Sb@NC at 2.0 mV s⁻¹. (b) Normalized contribution ratio of capacitive (red) and diffusion-limited (blue) capacities at various scan rates.

Fig. S17 (a) XRD pattern, (b) TEM image, (c) discharge–charge curves, and (d) cycling performance of the $Na_3V_2(PO_4)_3/C$ cathode between 2.5 and 3.8 V at a current density of 100 mA g⁻¹.

Fig. S18 STEM and EDX elemental mapping images of the Sb@NC electrode material after cycling 300 cycles between 0.01 and 2 V at a current density of 100 mA g^{-1} .

Fig. S19 Nyquist plots for the Sb, Sb@SC, Sb@PNC, Sb@NC cells (a) after the first cycle and (b) after 5 cycles acquired by using a sine wave with an amplitude of 10.0 mV over the frequency range of 100 kHz–100 mHz. The insets show the equivalent circuits applied for data fitting. R_e , R_f , and R_{ct} represent electrolyte resistance, SEI film resistance, and charge-transfer resistance, respectively. CPE1 and CPE2 are the abbreviation of the constant phase elements, usually corresponding to the SEI film capacitance and the double-layer capacitance, respectively. Z_w is the Warburg impedance, commonly ascribed to the diffusion of sodium ions into the bulk electrodes.

Sample	<i>R</i> _e (after 1 cycle)	<i>R</i> _f (after 1 cycle)	<i>R</i> _{ct} (after 1 cycle)	<i>R</i> _e (after 5 cycles)	<i>R</i> f (after 5 cycles)	<i>R</i> _{ct} (after 5 cycles)
Sb	13.0	62.8	0.01	9.3	188.2	0.01
Sb@SC	8.2	144.1	0.01	8.4	186.4	0.01
Sb@PNC	10.0	117.8	0.01	9.3	123.5	0.01
Sb@NC	9.1	92.1	0.01	9.3	95.4	0.01

Table S1. Kinetic parameters of the Sb, Sb@SC, Sb@PNC, Sb@NC cells after different cycles.

Electrode material	Synthetic method	Nitrogen content	Reference
Ionic liquid-derived nitrogen- enriched carbon	Pyrolysis of Emim-dca	16.86 wt%	This work
Nitrogen-doped carbon sheets	Carbonization of okara	9.89 at.%	1
Nitrogen-doped carbon nanofiber film	Carbonization of PI nanofiber film	7.15 wt%	2
Highly crumpled nitrogen- doped graphene sheets	Thermally induced expansion of the mixture of GO and cyanamide	6.53 wt%	3
Nitrogen-doped mesoporous hollow carbon spheres	Chemical vapor deposition	7.5 at.%	4
ZIF-8 derived carbon polyhedrons	Carbonization of ZIF-8	18.7 wt%	5
Nitrogen-doped activated carbons	Heat treatment of corncobs	~4 wt%	6
Nitrogen-doped porous interconnected doubled- shelled hollow carbon spheres	Chemical treatment of Fe ₃ O ₄ @polyacrylamide-derived carbon	2.17 wt%	7
3D N-doped graphene foams graphene oxide foams in ammonia		6.8 at.%	8
Highly nitrogen-doped porous carbon	y nitrogen-doped porous Pyrolysis of a nitrogen-containing carbon zeolitic imidazolate		9
Graphitic carbon nitride nanosheet–carbon nanotube porous composite	Low-temperature self-assembly	23.7 wt%	10
N-doped CNTs	Thermally treated under Ar/NH ₃ at 1100 °C	3.56 at.%	11
Mesoporous nitrogen-rich carbon	Pyrolysis of protein	7.11 wt%	12
N-doped carbon coating	Carbonization of polydopamine	14.16 wt% ^a	13
Nitrogen-doped graphene	Thermal annealing the mixture of melamine and GO	10.1 at.%	14
Nitrogen-doped carbon nanotube	Aerosol-assistant catalytic chemical vapor deposition	2.89 at.%	15

Table S2. A survey of nitrogen contents in electrode materials.

^a The nitrogen content is calculated based on the mass of N-doped carbon in the Fe₃O₄@NC composite.

	Voltage	Mass	Composition	Current	Reversible		
Active material	range (V vs.	loading (wt%)		density	capacity	Reference	
	Na/Na ⁺)	(mg cm ⁻²)	(WL%)	(mA g ⁻¹)	(mAh g ⁻¹)		
SheNC	0.01.2	0.0.1.0	Sb: 62.0	100	395 (after 100	This most	
SD@INC	0.01-2	0.8-1.2	C: 38.0	100	cycles) ^a	I his work	
Sh@NC	0.01.2		Sb: 62.0	100	565 (after 100		
SD@INC	0.01-2	0.8-1.2	C: 38.0	100	cycles) ^b	I his work	
	0.01.2		Sb: 62.0	100	328 (after 300	TT1 1	
SD@INC	0.01-2	0.8-1.2	C: 38.0	100	cycles) ^a	I his work	
Hollow Sb@C			Sh. 9 2 4		280 (-8 200		
yolk-shell	0.01-2.6	Not reported	SD: 82.4	1000	280 (after 200	16	
nanospheres			C. 17.0		cycles) "		
Sb/porous carbon	0.01.20	0.0.1.1	Sb: 64.15	100	523 (after 250	17	
nanocomposites	0.01-2.0	0.8-1.1	C: 35.85	100	cycles) ^b		
Cre Sh	0.05.2	0.6	Sb: 48.9	800	256 (after 200	18	
Cu ₂ Sb	0.05-2	0.6 mg cm ²	Cu: 51.1		cycles) ^c		
Sb-AlC _{0.75} -C	0.20	Not non-onted	Sb: 63	100	243 (after 100	19	
composite	0-2.0	Not reported	AlC _{0.75} -C: 37		cycles) ^a		
Sh. CNC had and	0.2	1.0	Sb: 66.5	100	439 (after 150	20	
SD-CINC hydrid	0-2	~1.0	C: 33.5	100	cycles) ^a	20	
Zn-Sb	0.01-2.0	1.0	$7n$ Sh \cdot 100	414	298 (after 200	21	
nanowires	0.01-2.0	1.0	ZII ₄ S0 ₃ . 100	414	cycles) ^c	21	
Sb/cross-linked			Sb: 100		462 (after 100	22	
chitosan as polymer	0.01-2.0	~1.0		600			
binder					cycles)		
ND Sh70	0.1_1.5	Not reported	Sb. 100	100	574 (after 200	22	
INF-5070	0.1-1.5	Not reported	30.100	100	cycles) ^b	23	
$Sb@TiO_{2-x}$	Not reported	1_1 5	Sb: 75	660	547 (after 120	24	
Nanotubes	Not reported	1-1.5	TiO _{2-x} : 25	000	cycles) ^a	24	
Sb@C coaxial	0.01-2.0	- 0.9	Sb: 60.9	150	407 (after 240	25	
nanotubes	0.01 2.0	~0.9	C: 39.1		cycles) ^a		
Sb/N-carbon+CNTs	0.01 - 2	1.0-1.2	Sb: 64	100	543 (after 200	26	
	0.01-2		C: 36		cycles) ^a		
Sb@C	0.01-2.0	~2.5	Sb: 41	180	456 (after 300	27	
microspheres	0.01 2.0		C: 59		cycles) ^b		
Shup Or C	0.01-3	Not reported	Sb: 31.2	100	430 (after 500	28	
SUNPS@SD-C			C: 68.8		cycles) ^a		
Sb/C/G	0.01 - 2	~2.5	Sb: 41.8	125	428 (after 300	20	
nanocomposite	0.01-2		C: 58.2		cycles) ^b	23	
Sb-O-G	0.01-2	2-3	Sb: 53	250	460 (after 200	30	

 Table S3. Electrochemical performances of Sb-based anode material in SIBs.

micro/nanomaterial			C: 47		cycles) ^a	
SiC–Sb–C	0.01-2.0	. 2	Sb: 70	100	492 (after 100	21
composite	0.01-2.0	~2	SiC-C: 30	100	cycles) ^a	51
I-Sb/rGO	0.1-2.0	. 2	Sb: 53	500	173 (after 150	22
composite	0.1-2.0	- <u>2</u>	C: 47	300	cycles) ^a	52
Nano-Sb@C	0.01-2.0	0.8	Sb: 68.8	100	385 (after 500	22
composite	0.01 2.0	~0.8	C: 31.2	100	cycles) ^a	33
D: Sh C	0.05-2	~2	Bi-Sb: 83.4	100	375 (after 50	34
D1 _{0.57} SU _{0.43} -C	0.03-2		C: 16.6	100	cycles) ^a	
CONFSE/SEONE	0.01.20	1 26	Sb: 5.5	200	340 (after 50	25
G@MISD/SD@MF	0.01-2.0	1.20	C: 0.15	200	cycles) ^a	33
	0.01.2	10.12	Sb: 100	100	617 (after 100	26
S0 PHMSS	0.01-2	1.0-1.2		100	cycles) ^b	30
Character di company	0.01.2.0	0.4	C1 100	200	521 (after 250	37
So nanorod arrays	0.01-2.0	~0.4	50. 100	200	cycles) ^b	
Sb/C _{CHI}	0.01.2.0	2	Sb: 40.9	500	372 (after 100	38
nanocomposite	0.01-2.0	~2	C: 59.1	500	cycles) ^a	
Sb/ICNNs	0.01.2		Sb: 80.8	100	542 (after 100	39
composite	0.01-2	Not reported	C: 19.2	100	cycles) ^a	
	0.01-2	1.0-1.5	Sb: ~40	100	406 (after 200	40
Sb/MLG hybrid			C: ~60	100	cycles) ^a	
	0.01.00	^ -	Sb: 68	100	404 (after 100	41
Sb@3D RCN	0.01-2.8	~0.7	C: 32	132	cycles) ^a	
Pitaya-like Sb@C	0.01.00		Sb: 40.8	4.4	609 (after 100	42
microspheres	0.01-2.0	Not reported	C: 59.2	44	cycles) ^b	
	0.001.20	0.7	Sb: 56	100	451 (after 500	43
Sb@S,N-3DPC	0.001-2.0	~0.7	C: 44	100	cycles) ^a	
	0.01-2.0	~0.25	Sb: 35.3	1000	467 (after 100	44
Sb/rGO paper			C: 64.7	1000	cycles) ^a	
	0.02-1.5	~0.5	Sb: 100	660	550 (after 250	45
Sb NCs					cycles) ^b	45
	0.01.0.0	1.5 mg/electrode	Sb ₂ S ₃ : 80	1000	656 (after 100	16
Sb ₂ S ₃ -graphite	0.01-2.8		C: 20	1000	cycles) ^a	40
	0.01.0.0	NT	Sb: 15.1	100	274 (after 100	45
Sb-C-G composite	0.01-2.0	Not reported	C: 84.9	100	cycles) ^a	4 /
CL-Sb	0.01-2.00	1.0-1.2 mg/electrode	a		629 (after 120	
			Sb: 100	100	cycles) ^b	48
		0.67	Sb/Sb ₂ O ₃ :93.3	66	512 (after 100	49
Sb/Sb ₂ O ₃ –PPy	0.001-1.5		C: 2.7		cycles) ^b	
RGO-SnSb		01–2.5 Not reported	Not reported	100	361 (after 80	50
nanocomposite	0.001-2.5			100	cycles) ^a	
NiSh hallow	NiSh hallow		NiSb: 100		500 (after 70	51
nanosnheres	0.01-2.0	Not reported		60	cycles) ^c	
nanospheres					- 1	

ZnSb/C composite	0.0-2.0	Not reported	Not reported	50	301 (after 30	52
				50	cycles) ^a	
Sho /Pco	0-2	~1.5	Sb: ~75	1000	409 (after 100	53
500 _x / KGO			C: ~25	1000	cycles) ^a	
Sb-carbon	0.001-2	Not reported	Sb: ~46	300	372 (after 100	54
composite			C:~54		cycles) ^a	
Sb–C nanofibers	0.01-2.0	~0.7	Sb: 38	200	446 (after 400	55
			C: 62	200	cycles) ^b	
	0.005.00	Not reported	Sb: 84.1	20	211 (after 30	56
86/G	0.005-2.0		C: 15.9		cycles) ^a	
	0.01.0.00	1.0-2.0	Sb: 15.6	-0	305 (after 60	57
Sb-N/C composite	0.01-3.00		C: 84.4	50	cycles) ^a	
20 mm Sh					590 (aftar	
20 mm 80	0.02-1.5	~1.0	Sb: 100	660	\sim 380 (alter	58
nanocrystals					100 cycles)	
CNE Such	0.0001 2.0	15.20	SnSb: ~60	100	345 (after 205	50
CNF-SnSD	0.0001-2.0	1.5-2.0	C:~40	100	cycles) ^a	39
			Sb: 28.2		(56 (ofter 50	
Sn–Ge–Sb alloys	0.01-2	Not reported	Sn: 55.0	85		60
			Ge: 16.8		cycles) *	
Sb/MWCNT	0.2	1010	Sb: 75.3	200	382 (after 120	61
nanocomposite	0-2	1.0-1.2	C: 24.7	200	cycles) ^a	
	0-2	~1.0	Sb ₂ S ₃ : 83	50	670 (after 50	62
rGO/S0 ₂ S ₃			C: 17	50	cycles) ^a	
SINDOC	0-2	3.0	Sb: 54	100	350 (after 300	63
SonP@C		mg/electrode	C: 46		cycles) ^a	
SiC-Sb-C			Sb: 70	100	480 (after 50	64
nanocomposites	0.01-2.0	Not reported	SiC-C: 20	100	cycles) ^a	
Sb/C	0.2	~3.0	Sb: 70	100	575 (after 100	65
nanocomposite	0-2		C: 30		cycles) ^b	
SnSb/C	0.1.0	-1.2 Not reported	SnSb: 70	100	435 (after 50	
nanocomposite	0-1.2		C: 30		cycles) °	00
	0.02.1.5	1.4	Sb: 100	220	~580 (after	67
Bulk Sb	0.02-1.5	1.4		330	160 cycles) ^b	

^a The capacity value is calculated based on the mass of Sb-based composite; ^b The capacity value is calculated on the basis of Sb only; ^c The capacity value is calculated based on the mass of MSb (M = Cu, Sn, Bi, Ni, Zn, or Ge).

References

- 1 T. Yang, T. Qian, M. Wang, X. Shen, N. Xu, Z. Sun and C. Yan, Adv. Mater., 2016, 28, 539.
- 2 S. Wang, L. Xia, L. Yu, L. Zhang, H. Wang and X. W. Lou, Adv. Energy Mater., 2016, 6, 1502217.
- 3 J. Song, Z. Yu, M. L. Gordin and D. Wang, Nano Lett., 2016, 16, 864.

- 4 Q. Ma, L. Wang, W. Xia, D. Jia and Z. Zhao, Chem. Eur. J., 2016, 22, 2339.
- 5 N.-L. Liu, S. Dutta, R. R. Salunkhe, T. Ahamad, S. M. Alshehri, Y. Yamauchi, C.-H. Hou and K. C. W. Wu, Sci. Rep., 2016, 6, 28847.
- 6 B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang and M. Cai, Energy Environ. Sci., 2016, 9, 102.
- 7 K. Zhang, X. Li, J. Liang, Y. Zhu, L. Hu, Q. Cheng, C. Guo, N. Lin and Y. Qian, *Electrochim. Acta*, 2015, 155, 174.
- 8 J. Xu, M. Wang, N. P. Wickramaratne, M. Jaroniec, S. Dou and L. Dai, Adv. Mater., 2015, 27, 2042.
- 9 F. Zheng, Y. Yang and Q. Chen, Nat. Commun., 2014, 5, 5261.
- 10 T. Y. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, Angew. Chem., Int. Ed., 2014, 53, 7281.
- 11 W. J. Lee, T. H. Hwang, J. O. Hwang, H. W. Kim, J. Lim, H. Y. Jeong, J. Shim, T. H. Han, J. Y. Kim, J. W. Choi and S. O. Kim, *Energy Environ. Sci.*, 2014, 7, 621.
- 12 Z. Li, Z. Xu, X. Tan, H. Wang, C. M. B. Holt, T. Stephenson, B. C. Olsen and D. Mitlin, *Energy Environ. Sci.*, 2013, **6**, 871.
- 13 C. Lei, F. Han, D. Li, W.-C. Li, Q. Sun, X.-Q. Zhang and A.-H. Lu, Nanoscale, 2013, 5, 1168.
- 14 Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang and X.-H. Xia, ACS Nano, 2011, 5, 4350.
- 15 L. G. Bulusheva, A. V. Okotrub, A. G. Kurenya, H. Zhang, H. Zhang, X. Chen and H. Song, *Carbon*, 2011, 49, 4013.
- 16 J. Liu, L. Yu, C. Wu, Y. Wen, K. Yin, F.-K. Chiang, R. Hu, J. Liu, L. Sun, L. Gu, J. Maier, Y. Yu and M. Zhu, *Nano Lett.*, 2017, **17**, 2034.
- 17 X. Zhang, P. Li, R. Zang, S. Wang, Y. Zhu, C. Li and G. Wang, Chem. Asian J., 2017, 12, 116.
- 18 L. Wang, C. Wang, N. Zhang, F. Li, F. Cheng and J. Chen, ACS Energy Lett., 2017, 2, 256.
- 19 G. J. Jung, Y. Lee, Y. S. Mun, H. Kim, J. Hur, T. Y. Kim, K. S. Suh, J. H. Kim, D. Lee, W. Choi and I. T. Kim, *J. Power Sources*, 2017, 340, 393.
- 20 X. Xu, L. Si, X. Zhou, F. Tu, X. Zhu and J. Bao, J. Power Sources, 2017, 349, 37.
- 21 A. Nie, L.-y. Gan, Y. Cheng, X. Tao, Y. Yuan, S. Sharifi-Asl, K. He, H. Asayesh-Ardakani, V. Vasiraju, J. Lu, F. Mashayek, R. Klie, S. Vaddiraju, U. Schwingenschlögl and R. Shahbazian-Yassar, *Adv. Funct. Mater.*, 2016, 26, 543.
- 22 H. Gao, W. Zhou, J.-H. Jang and J. B. Goodenough, Adv. Energy Mater., 2016, 6, 1502130.
- 23 S. Liu, J. Feng, X. Bian, J. Liu and H. Xu, Energy Environ. Sci., 2016, 9, 1229.
- 24 N. Wang, Z. Bai, Y. Qian and J. Yang, Adv. Mater., 2016, 28, 4126.
- 25 Z. Liu, X.-Y. Yu, X. W. Lou and U. Paik, Energy Environ. Sci., 2016, 9, 2314.
- 26 X. Liu, Y. Du, X. Xu, X. Zhou, Z. Dai and J. Bao, J. Phys. Chem. C, 2016, 120, 3214.
- 27 S. Qiu, X. Wu, L. Xiao, X. Ai, H. Yang and Y. Cao, ACS Appl. Mater. Interfaces, 2016, 8, 1337.
- 28 W. Luo, P. Zhang, X. Wang, Q. Li, Y. Dong, J. Hua, L. Zhou and L. Mai, J. Power Sources, 2016, 304, 340.
- 29 H.-Y. Lü, F. Wan, L.-H. Jiang, G. Wang and X.-L. Wu, Part. Part. Syst. Charact., 2016, 33, 204.
- 30 F. Wan, J.-Z. Guo, X.-H. Zhang, J.-P. Zhang, H.-Z. Sun, Q. Yan, D.-X. Han, L. Niu and X.-L. Wu, ACS Appl. Mater. Interfaces, 2016, 8, 7790.
- 31 H. Lu, L. Wu, L. Xiao, X. Ai, H. Yang and Y. Cao, *Electrochim. Acta*, 2016, 190, 402.
- 32 F. Wan, H.-Y. Lü, X.-H. Zhang, D.-H. Liu, J.-P. Zhang, X. He and X.-L. Wu, J. Alloys Compd., 2016, 672, 72.
- 33 N. Zhang, Y. Liu, Y. Lu, X. Han, F. Cheng and J. Chen, Nano Res., 2015, 8, 3384.
- 34 Y. Zhao and A. Manthiram, Chem. Mater., 2015, 27, 3096.
- 35 Y.-L. Ding, C. Wu, P. Kopold, P. A. van Aken, J. Maier and Y. Yu, Small, 2015, 11, 6026.
- 36 H. Hou, M. Jing, Y. Yang, Y. Zhang, Y. Zhu, W. Song, X. Yang and X. Ji, J. Mater. Chem. A, 2015, 3, 2971.
- 37 L. Liang, Y. Xu, C. Wang, L. Wen, Y. Fang, Y. Mi, M. Zhou, H. Zhao and Y. Lei, Energy Environ. Sci., 2015,

8, 2954.

- 38 J. Duan, W. Zhang, C. Wu, Q. Fan, W. Zhang, X. Hu and Y. Huang, Nano Energy, 2015, 16, 479.
- 39 H. Hou, M. Jing, Y. Yang, Y. Zhang, W. Song, X. Yang, J. Chen, Q. Chen and X. Ji, J. Power Sources, 2015, 284, 227.
- 40 L. Hu, X. Zhu, Y. Du, Y. Li, X. Zhou and J. Bao, Chem. Mater., 2015, 27, 8138.
- 41 M. Wang, Z. Yang, J. Wang, W. Li, L. Gu and Y. Yu, Small, 2015, 11, 5381.
- 42 L. Wu, H. Lu, L. Xiao, X. Ai, H. Yang and Y. Cao, J. Mater. Chem. A, 2015, 3, 5708.
- 43 C. Yang, W. Li, Z. Yang, L. Gu and Y. Yu, Nano Energy, 2015, 18, 12.
- 44 W. Zhang, Y. Liu, C. Chen, Z. Li, Y. Huang and X. Hu, Small, 2015, 11, 3822.
- 45 M. Walter, R. Erni and M. V. Kovalenko, Sci. Rep., 2015, 5, 8418.
- 46 Y. Zhao and A. Manthiram, Chem. Commun., 2015, 51, 13205.
- 47 K. Li, D. Su, H. Liu and G. Wang, Electrochim. Acta, 2015, 177, 304.
- 48 H. Hou, M. Jing, Y. Zhang, J. Chen, Z. Huang and X. Ji, J. Mater. Chem. A, 2015, 3, 17549.
- 49 D.-H. Nam, K.-S. Hong, S.-J. Lim, M.-J. Kim and H.-S. Kwon, Small, 2015, 11, 2885.
- 50 L. Ji, W. Zhou, V. Chabot, A. Yu and X. Xiao, ACS Appl. Mater. Interfaces, 2015, 7, 24895.
- 51 J. Liu, Z. Yang, J. Wang, L. Gu, J. Maier and Y. Yu, Nano Energy, 2015, 16, 389.
- 52 J.-H. Choi, C.-W. Ha, H.-Y. Choi, H.-C. Shin and S.-M. Lee, Mater. Lett., 2015, 159, 349.
- 53 X. Zhou, X. Liu, Y. Xu, Y. Liu, Z. Dai and J. Bao, J. Phys. Chem. C, 2014, 118, 23527.
- 54 Y. N. Ko and Y. C. Kang, Chem. Commun., 2014, 50, 12322.
- 55 L. Wu, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, X. Ai, H. Yang and Y. Cao, Energy Environ. Sci., 2014, 7, 323.
- 56 Y. Zhang, J. Xie, T. Zhu, G. Cao, X. Zhao and S. Zhang, J. Power Sources, 2014, 247, 204.
- 57 X. Zhou, Y. Zhong, M. Yang, M. Hu, J. Wei and Z. Zhou, Chem. Commun., 2014, 50, 12888.
- 58 M. He, K. Kravchyk, M. Walter and M. V. Kovalenko, Nano Lett., 2014, 14, 1255.
- 59 L. Ji, M. Gu, Y. Shao, X. Li, M. H. Engelhard, B. W. Arey, W. Wang, Z. Nie, J. Xiao, C. Wang, J.-G. Zhang and J. Liu, *Adv. Mater.*, 2014, 26, 2901.
- 60 B. Farbod, K. Cui, W. P. Kalisvaart, M. Kupsta, B. Zahiri, A. Kohandehghan, E. M. Lotfabad, Z. Li, E. J. Luber and D. Mitlin, *ACS Nano*, 2014, **8**, 4415.
- 61 X. Zhou, Z. Dai, J. Bao and Y.-G. Guo, J. Mater. Chem. A, 2013, 1, 13727.
- 62 D. Y. W. Yu, P. V. Prikhodchenko, C. W. Mason, S. K. Batabyal, J. Gun, S. Sladkevich, A. G. Medvedev and O. Lev, *Nat. Commun.*, 2013, **4**, 2922.
- 63 Y. Zhu, X. Han, Y. Xu, Y. Liu, S. Zheng, K. Xu, L. Hu and C. Wang, ACS Nano, 2013, 7, 6378.
- 64 L. Wu, F. Pei, R. Mao, F. Wu, Y. Wu, J. Qian, Y. Cao, X. Ai and H. Yang, Electrochim. Acta, 2013, 87, 41.
- 65 J. Qian, Y. Chen, L. Wu, Y. Cao, X. Ai and H. Yang, Chem. Commun., 2012, 48, 7070.
- 66 L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Nie and J. Liu, Chem. Commun., 2012, 48, 3321.
- 67 A. Darwiche, C. Marino, M. T. Sougrati, B. Fraisse, L. Stievano and L. Monconduit, J. Am. Chem. Soc., 2012, 134, 20805.