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Calculation of specific capacitance

(1) Gravimetric capacitance

The mass difference of the Ni(OH)2/Ni-GN electrode before and after the deposition of 
Ni(OH)2 carefully measured by a microbalance was 2.0 mg. When we calculated the 
capacitance value, we considered Ni(OH)2 as the active material of the device (by ignoring the 
presence of Ni-GN and determined the mass of active materials to be 2.0 mg because the 
capacitance of the Ni-GN current collector is negligible compared to the specific capacitance 
value of the Ni(OH)2/Ni-GN electrode (<6.6 vs. 3,179 F/g), as shown in Figure S10.

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝑇𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 ‒ 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑁𝑖 ‒ 𝐺𝑁 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒

The capacitance was calculated by cyclic voltammograms (CV) curves and galvanostatic 
charge/discharge curves.

𝑇𝑜𝑡𝑎𝑙 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 2 𝑚𝑔

- Galvanostatic charge/discharge curves

𝐶𝑠 =  
𝑖

𝑚 (∆𝑉/∆𝑡)
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𝐶 =  
(20 × 10 ‒ 3 𝐴)

(2 × 10 ‒ 3𝑔) × (0.65 ‒ 0.1 ‒ 0.02597 (𝐼𝑅 𝑙𝑜𝑠𝑠))/(162.14 𝑠)

=
10 𝐴/𝑔

(0.65 ‒ 0.1 ‒ 0.02597 (𝐼𝑅 𝑙𝑜𝑠𝑠))/(162.14 𝑠)

= 3,179 F/g

(2) Volumetric capacitance

The volumetric capacitance was calculated by considering a volume of the electrode. The 
volume of the electrode was calculated after measuring area and height. We supposed that 
Ni(OH)2 as an active material was fixed as 1 cm2 (1 cm × 1 cm). The height of the electrode 
was measured by a micrometer (Mitutoyo Korea Corporation).

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 = 𝑎𝑐𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 ×  ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 

 In the case of the Ni(OH)2/Ni-GN electrode with a total height of 266 um.

                                         𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 = 1 𝑐𝑚2 ×  0.0266 𝑐𝑚

= 0.0266 cm3

- Galvanostatic charge/discharge curves

𝐶𝑠 =  
𝑖

𝑣 (∆𝑉/∆𝑡)
 

𝐶 =  
(20 × 10 ‒ 3 𝐴)

(0.0266 𝑐𝑚3) × (0.65 ‒ 0.1 ‒ 0.02597 (𝐼𝑅 𝑙𝑜𝑠𝑠))/(162.14 𝑠)

 C → specific capacitance

 i → current density 

 m → mass of active material

 △V → potential window range

 △t → discharge time

 C → specific capacitance

 i → current density 

 v → volume of electrode 

 △V → potential window range

 △t → discharge time
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            = 232.64 F/cm3

Figure S1. SEM images of commercial nickel foam (a) and Ni-GN (b). (c) Photograph of 
commercial medical cotton, Ni-GN, carbonized cotton without nickel from the left to right. (d) 
EDS (Energy dispersive spectrometer) image of each element in Ni-GN
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Figure S2. Chemical structure of cotton (a) and FT-IR spectra of a commercial medical cotton 
foam (b).

Figure S3. TGA curve of cotton with anhydrous nickel (a) and EDS data of Ni-GN (b).

Figure S4. Schematic illustration of enhanced electrolyte transport in Ni-GN.
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Figure S5. SEM images (a,b) of Ni-GN and TEM images (c,d) of the surface of Ni-GN. 

Figure S6. Raman spectra (a), electrical conductivity and surface area (b) of Ni-GN carbonized 
at various temperature.
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Figure S7. CV curves at various scan rates of (a), GCD curves (b), kinetic property (c) and 
specific capacitance vs current density (d) of Ni(OH)2/Ni-GN carbonized at 600 ℃.
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Figure S8. CV curves at various scan rates of (a), GCD curves (b), kinetic property (c) and 
specific capacitance vs current density (d) of Ni(OH)2/Ni-GN carbonized at 800 ℃.

Ni-GN pyrolyzed at the relatively low temperature range (600-800 ℃) showed low quality of 

carbon materials due to insufficient energy to activate the graphitization. This resulted in a bad 

performance of the supercapacitor due to the low charge transport and low electrical 

conductivity of the current collector.
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Figure S9. Large area (a) and magnified SEM image (b) of Ni(OH)2/Ni-GN.

The prepared Ni-GN electrode, Pt mesh and Ag/AgCl (sat.) electrode was used as a working 

electrode, counter electrode and reference electrode, respectively. Electrodeposition was 

performed at -5 mA of current on the working electrode for 5 mins at 25 °C in a 100 mM nickel 

nitrate hexahydrate solution. And then Ni(OH)2/Ni-GN electrode was washed using DI water 

and ethanol and dried at 120 °C for 12 hours in a vacuum oven.

Figure S10. CV curves (a) and the capacitance value (b) of Ni-GN only (without active 
materials) at various scan rates.
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Figure S11. SEM and EDS images of Ni1-GN9 (a) and Ni9-GN1 (b).

Figure S12. Electrical conductivity of Ni-GN by the increment of Ni-NPs (a) and surface area 
and electrical conductivity vs the nickel contents (b).

The highest capacitance value was obtained from the Ni3-GN7 electrode where two important 

factors, the conductivity and the surface area, are optimized (Figure 5 and Table 1). Ni3-GN7 

optimally exhibits large surface area (16.4 vs 1.21 m2/g of Ni3-GN7, and Ni9-GN1) and high 

electrical conductivity (107 S/m vs 39 S/m of Ni3-GN7, and Ni1-GN9).
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Figure S13. CV curves (a) at various scan rates and GCD curves (b) of MnO2@Ni-GN of Ni-
GN. Kinetic property (c) and specific capacitance vs current density (d) of MnO2@Ni-GN of 
Ni-GN.

Figure S14. (a) CV curves of Ni(OH)2@Ni-GN and MnO2@Ni-GN devices at different scan 
rates. (b) Energy efficiency of Ni(OH)2@Ni-GN and MnO2@Ni-GN devices at different scan 
rates.
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Figure S15. GCD curves (a) and specific capacitance (b) of our Ni(OH)2@Ni-GN and 
MnO2@Ni-GN electrode.

Figure S 16. Compressive stress and compressive strain curve of Ni-GN.

The mechanical strength of the Ni-GN current collector was measured by Dual Column Floor Frames 

(Instron Co. 5982). A compression force of 9,000 N was applied on the Ni-GN current collector at a 

rate of 0.5 mm/min. The Young’s modulus of Ni-GN is 31 GPa, which is much higher than that of a 

similar electrode (~ 0.81 GPa)1 due to the formation of the welded 3D-network in Ni-GN. 
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Table S1. Capacitance of previously reported Ni(OH)2-based supercapacitors tested in the 
aqueous electrolyte.

Materials/current 
collector

Specific 
capacitance Retention Electrolyte Reference

Ni(OH)2//rGO 1,717 F/g at 0.5 
A/g

89 % after 10,000 
cycles 2 M KOH [13]

Ni(OH)2//Ni foam 2,384 F/g at 1 A/g 75 % after 3,000 
cycles 2 M KOH [18]

Ni(OH)2//NPG 3,168 F/g at 5 A/g 90 % after 30,000 
cycles 1 M KOH [19]

Ni(OH)2//hexagonal 
platelets-Ni foam

2,534 F/g at 
1mV/s

97 % after 2,000 
cycles 2 M KOH [21]

Porous Ni(OH)2 
nanoflakes/graphene 

sheet//Ni foam

2,194 F/g at 
2mV/s

95 % after 2,000 
cycles 6 M KOH [32]

Our work 3,179 F/g at 10 
A/g

90 % after 10, 000 
cycles 1 M KOH

Table S2. Energy density and power density of previously reported Ni(OH)2-based 
supercapacitors tested in the aqueous electrolyte.

Materials
Energy 
density
(Wh/kg)

Power 
density
(W/kg)

Electrolyte Reference

Ni(OH)2/graphite//AC 35.7 490 1 M KOH [35]

Ni(OH)2/CNT&

PEDOT:PSS//rGO/CN

T

58.5 780 1 M KOH [14]

Ni(OH)2/graphene//

porous graphene
77.8 174.7 6 M KOH [12]

Ni(OH)2/CNT/NF//AC 50.6 95 6 M KOH [36]

Our work 189 1460 1 M KOH
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Table S3. Energy density and power density of various supercapacitors tested in the organic 
electrolyte.

Materials
Energy 
density
(Wh/kg)

Power 
density
(W/kg)

Electrolyte Reference

VN/graphene 162 200 1 M LiPF6 [37]

B doped 

Si/SiO2/Carbon
128 1229 1 M LiPF6 [38]

Fe3O4/graphene 147 150 1 M LiPF6 [39]

N doped AC 230 1747 1.2 M LiPF6 [40]

TiNb2O7/Carbon 110 99.58 1 M LiPF6 [41]


