Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Metallic 1T MoS₂ Nanosheet Arrays Vertically Grown on Activated Carbon Fiber Cloth for Enhanced Li-Ion Storage Performance

Minghong Wu,^a Jing Zhan,^a Kuan Wu,^a Zhen Li,^a Liang Wang,^c Bijang Geng,^b Lijun

Wang,^b and Dengyu Pan*,^b

^a·Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University,
Shanghai 200444, PR China
^b·Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University,
Shanghai 200444, PR China

^c.Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, PR China

Figure S1. Raman spectra of CFC, 1T-MoS₂/CFC and 2H-MoS₂/CFC.

Figure S2. FT-IR spectrum of CFC, 2H-MoS₂/CFC and 1T-MoS₂/CFC.

Figure S3. SEM images of the original CFC (a-b) before and (c-d) after annealing

at 450 °C in air.

Figure S4. EDX spectrum of MoS₂/ACF

Table S1.	Comparison	of MoS ₂ base	ed anode materials
-----------	------------	--------------------------	--------------------

Active material	Phase of MoS ₂	Curren t density (mA/g)	Reversible capacity (mAh/g)	CE (%)	Referenc e
1T-MoS ₂ /CFC	1T	100	1789	81	Our work
2H-MoS ₂ /CFC	2H	100	1026	83	Our work
2H /1T-MoS ₂ /Graphene	2H/1T	2000	715		1
MoS ₂ /CNT	2H	100	1726	91	2
MoS ₂ /RGO/o-MWCNT	2H	100	1275	75	3
MoS ₂ +MoC/MWCNT	2H	100	963		4
MoS ₂ /Cnanosheet	2H	100	1191	76	5

C@MoS2nanoboxes	2H	100	1164	59	6
MoS ₂ /PNFs	2H	100	1210		7
PVP-C@MoS ₂	2H	100	1136		8
Mesoporous-	2H	100	1750	64	9
Carbon/MoS ₂					
MoS ₂ @N-CF	2H	1000	839	85	10
MoS ₂ /RGO/CFC	2H	200	1225		11
MoS ₂ / Carbon nanofiber	2H	100	1267	74	12
MoS ₂ /CFC	2H	100	1125	81	13
C@MoS ₂ nanoboxes	2H	100	1164	59	14

Figure S5. (a) Galvanostatic charge-discharge profiles of CFC at current densities of 0.01 A/g. (b) Cycling performance of CFC at current densities of 0.01 A/g (the weight of CFC is 18.85 mg; the reversible capacity is 117 mAh/g in the first cycle)

Figure S6. Cycling performance of 1T-MoS₂/CFC and 2H-MoS₂/CFC at current density of 0.5 A/g for 100 cycles.

Figure S7. SEM images of 1T-MoS₂/CFC electrodes recharged to 3.00 V after 100

cycles at current densities of 0.5 A/g.

Figure S8. Galvanostatic charge-discharge profiles of 1T-MoS₂ nanosheet powder at current densities of 0.1 A/g.

For contrast, the $1T-MoS_2$ nanosheet powder electrode was prepared by collecting the precipitate ($1T-MoS_2$ nanosheet powder) after completing the same reaction without CFC, mixing 10 wt % of acetylene black as conducting agent and 10 wt % of polyvinylidene fluoride as binder to form a homogeneous slurry, and then spreading

uniformly onto a copper foil with the mass loading of about $1.3 \pm 0.2 \text{ mg/cm}^2$.

Figure S9. Cycling performance of the MoS₂/CFC grown under DMF:H₂O =

0.5:1.0 vol/vol at current density of 1 A/g.

Figure S10. XRD patterns of 1T-MoS₂/CFC discharged to 0.01 V and then recharged to 3.00 V after 10 cycles at current density of 1 A/g.

Figure S11. Raman patterns of 1T-MoS₂/CFC discharged to 0.01 V and then

recharged to 3.00 V after 10 cycles at current density of 1 A/g.

Reference

- Y. Zhou, Y. Liu, W. X. Zhao, R. M. Xu, D. H. Wang, B. J. Li, X. Zhou and H. Shen, *Electrochim. Acta*, 2016, 211, 1048-1055.
- J. Y. Li,Y. Hou, X. F. Gao, D. S. Guan, Y. Y. Xie, J. H. Chen and C. Yuan, *Nano Energy*, 2015, 16,10-18.
- 3. N. Lingappan, N. H. Van, S. Lee and D. J. Kang, J. Power Sources, 2015, 280, 39-46.
- 4. X. Li, J. Y. Zhang, R. Wang, H. Y. Huang, C. Xie, Z. H. Li, J. Li and C. M. Niu, *Nano Lett.*, 2015, **15**, 5268-5272.
- H. Jiang, D. Y. Ren, H. F. Wang, Y. J. Hu, S. J. Guo, H. Y. Yuan, P. J. Hu, L. Zhang and C. Z. Li, *Adv. Mater.*, 2015, 27, 3687-3695.
- 6. X. Y. Yu, H. Hu, Y. W. Wang, H. Y. Chen and X. Wen (David) Lou, *Chem. Int. Ed.*, 2015, **54**, 7395-7398.
- 7. J. H. Kong, C. Y. Zhao, Y. F. Wei and X. H. Lu, *ACS Appl. Mater. Interfaces*, 2015, 7, 24279-24287.
- 8. C. Mao, Y. Zhong, H. J. Shang, C. S. Li, Z. Y. Guo and G. C. Li, *Chemical Engineering Journal*, 2016, **304**, 511-517.
- Y. Fang, Y. Y. Lv, F. Gong, A. A. Elzatahry, G. F. Zheng and D. Y. Zhao, *Adv. Mater.*, 2016, 28, 9385-9390.
- 10. Z. H. Miao, P. P. Wang, Y. C. Xiao, H. T. Fang, L. Zhen and C. Y. Xu, ACS Appl. Mater.

Interfaces, 2016, 8, 33741-33748.

- F. Y. Xiong, Z. Y. Cai, L. B. Qu, P. F. Zhang, Z. F. Yuan, O. K. Asare, W. W. Xu, C. Lin and L. Q. Mai, ACS Appl. Mater. Interfaces, 2015, 7, 12625-12630.
- 12. C. B. Zhu, X. K. Mu, P. A. van Aken, Y. Yu and J. Maier, *Angew. Chem. Int. Ed.*, 2014, **53**, 2152-2156.
- 13. C. Wang, W. Wan, Y. H. Huang, J. T. Chen, H. H. Zhou and X. X. Zhang, *Nanoscale*, 2014, 6, 5351-5358.
- 14. X. Y. Yu, H. Hu, Y. W. Wang, H. Y. Chen and X. W. (David) Lou, *Angew. Chem. Int. Ed.*, 2015, **54**, 7395-7398