Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

# **Supporting Information**

## One-Pot Synthesis of Uniform Cu<sub>2</sub>O-CuO-TiO<sub>2</sub> Hollow Nanocages and Highly

## **Stable Lithium Storage Properties**

Guangxia Wang,<sup>a</sup> Yongming Sui,<sup>\*a</sup> Meina Zhang,<sup>b</sup> Man Xu,<sup>a</sup> Qingxin Zeng,<sup>a</sup> Chuang Liu,<sup>a</sup> Xinmei Liu,<sup>a</sup> Fei Du,<sup>\*ab</sup> and Bo Zou<sup>\*a</sup>

<sup>a</sup>State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, P. R. China

<sup>b</sup>Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin

University, Changchun 130012, P. R. China

\*Corresponding Author: zoubo@jlu.edu.cn; suiym@jlu.edu.cn; dufei@jlu.edu.cn;

## **Experiment section**

#### Reagents

Copper sulfate pentahydrate (CuSO<sub>4</sub>·5H<sub>2</sub>O), glucose (C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>), potassium sodium tartrate tetrahydrate and potassium hydroxide (KOH) purchased from Guoyao Chemical Reagent Company (Shanghai, China). Titanium fluoride (99%) was commercially available. All chemicals were used in the experiments without further purication. Deionized water was used throughout the experiments.

**Preparation of pure Cu<sub>2</sub>O Solid Truncated Octahedron (26-facet Cu<sub>2</sub>O):** solid truncated octahedral Cu<sub>2</sub>O was synthesized by reduction a basic tartrate complex solution (Fehling's solution) with glucose.<sup>1</sup> Fehling's solution composed of 7 g L<sup>-1</sup> of CuSO<sub>4</sub>·5H<sub>2</sub>O, 25 g L<sup>-1</sup> of potassium sodium tartrate tetrahydrate and 4.5 g L<sup>-1</sup> of KOH. 0.4 mL (0.25M) glucose aqueous solution was added into 20 mL of the diluted stock Fehling's solution with water (volume ratio of Fehling solution and water was 1:9) during stirring. Then, the mixed solution was transferred into a static water bath and kept at 75 °C for 1 h. The resulting precipitates were centrifuged at 6000 rpm min<sup>-1</sup> for 3 min, washed with water for twice, and finally dried at 60 °C for 6 h for further use.

**Pure anatase TiO<sub>2</sub> crystals** were fabricated by the same process without the addition of  $Cu_2O$  nanoparticles.<sup>2,3</sup>

### Materials characterization

The composition of these products were investigated by Powder X-ray diffraction (XRD) using a rotating a MicroMax-007HF equipped with a rotating anode Cu-K $\alpha$  target with multilayer optics and an imaging plate detector. The X-ray generator worked at 40KV and 30mA, and the X-ray beam size was reduced to 30µm using a pin-hole collimator.

The X-ray photoelectron spectroscope (XPS) was collected on the VG ESCALAB MKII spectrometer with an Mg Kr excitation (1253.6 eV). The morphology and element mapping images of the asobtained samples was carried out by a Field emission scanning electron microscope (FESEM, FEI Company) operating at 18kV. STEM, STEM-element mapping, HRTEM, and SAED patterns were obtained on a JEM 2200FS with an accelerating voltage of 200 kV.

### **Electrochemical characterization**

The electrochemical experiments of Cu<sub>2</sub>O-CuO-TiO<sub>2</sub> electrodes were carried out by assembling cointype half cells. The working electrode was composed of Cu<sub>2</sub>O-CuO-TiO<sub>2</sub> active material (70 wt %), Ketjen Black (carbon ECP) conductive additive (20 wt %), carboxyl methylcellulose (CMC, 5 wt %) and styrene butadiene rubber (SBR, 5 wt %) dissolved in deionized water on a copper foil. The slurry mixture dried in vacuum at 100 °C for 12 h. After punched into round disks with a diameter of 10 mm, the test electrodes with a mass loading about 1.0-2.0 mg were assembled using metallic lithium as counter electrode and Celgard 2320 membranes as separators inside an Ar-filled glove box. The electrolyte was 1 M lithium hexafluorophosphate (LiPF6) dissolved in a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) with a volume ratio of 1:1. The galvonostatic charge–discharge cycling was conducted on a Land-2001A (Wuhan, China) automatic battery tester. Cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) were performed on a VSP multichannel potentiostatic–galvanostatic system (Biologic, France). CV curves were recorded at a scanning rate of 0.1 mV s<sup>-1</sup> from 0.01 V to 3.0 V. The EIS data was recorded from 1 MHz to 5 MHz by applying an AC voltage of 5 mV.

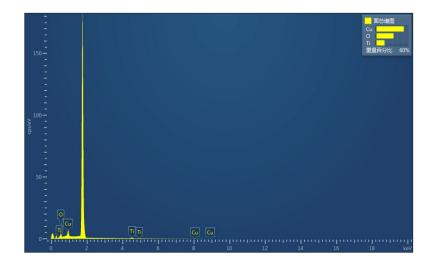
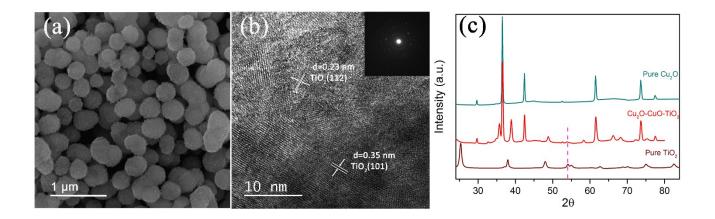



Fig. S1 Energy dispersive X-ray (EDX) spectra of Cu<sub>2</sub>O-CuO-TiO<sub>2</sub>.

**Table S1.** The composition mass ratio of  $Cu_2O$ -CuO-TiO<sub>2</sub> hollow nanocage in different areas. The average mass ratio of Cu and Ti is 3.4:1


| Elemental/Test | 1st   | 2nd   | 3rd   | 4th   | Average |
|----------------|-------|-------|-------|-------|---------|
| Cu             | 53.83 | 55.56 | 55.25 | 54.52 | 54.79   |
| Ti             | 16.04 | 14.92 | 16.76 | 16.85 | 16.14   |

## **Calculation for theoretical capacities**

According to the EDS analysis of composition, the element mass fraction of copper and Ti can be roughly determined as 77.2% and 22.8%, respectively. Besides, based on the XRD characterization, the relative contents of the Cu<sub>2</sub>O phase and CuO phase in copper oxides are calculated by the height of characteristic diffraction peaks. According to  $I_{Cu_2O(111)}/(I_{CuO(111)} + I_{Cu_2O(111)})$ , the mass ratio of Cu<sub>2</sub>O is about 79% in the copper oxides composites. It is noted that the mass ratio of the Cu<sub>2</sub>O is estimated by the XRD of samples fabricated in 170 °C 1 h. Calculated the mass ratio between each material based on the above data, the theoretical capacity of the CCT is as follows:

 $C_{theoretical} = C_{Cu_20} \times wt\%_{Cu_20} + C_{Cu0} \times wt\%_{Cu0} + C_{Ti0_2} \times wt\%_{Ti0_2}$ 

 $C_{\rm CCT} = 375 \times 77.2\% \times 79\% + 674 \times 77.2\% \times 21\% + 176 \times 22.8\% = 378 \ mAh \ g^{-1}$ 



**Fig. S2** (a) FESEM image and (b) HRTEM of pure  $TiO_2$  and (c) XRD images of pure  $Cu_2O$ ,  $Cu_2O$ -CuO- $TiO_2$  and pure  $TiO_2$ .

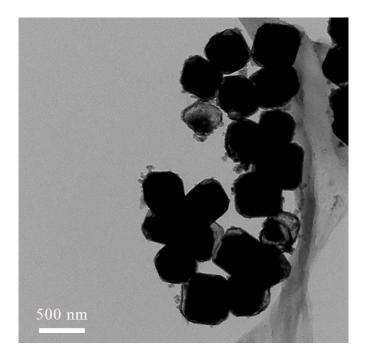



Fig. S3 STEM image of Cu\_2O-CuO-TiO\_2 synthesized in 170  $^{\circ}\mathrm{C}$  for 5 min.

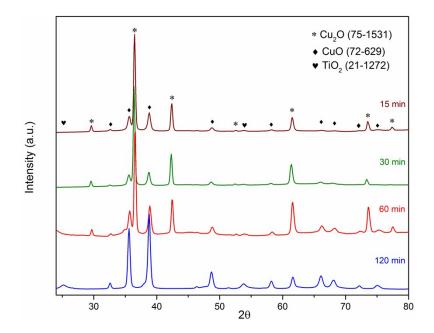



Fig. S4 XRD image of Cu<sub>2</sub>O-CuO-TiO<sub>2</sub> synthesized in 170  $^\circ$ C for different time.

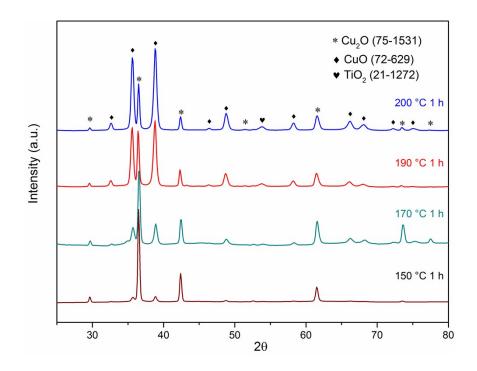



Fig. S5 XRD image of  $Cu_2O$ -CuO-TiO<sub>2</sub> synthesized in different temperature for 1 h.

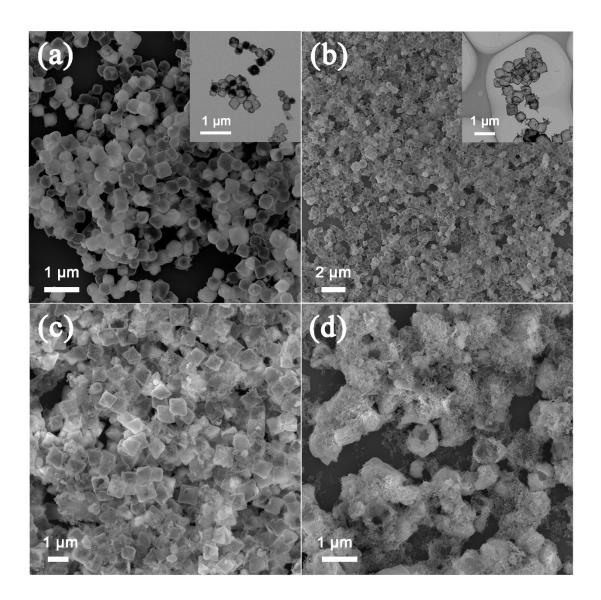
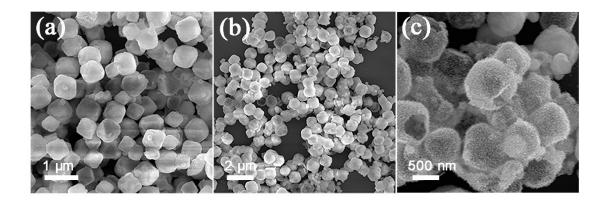
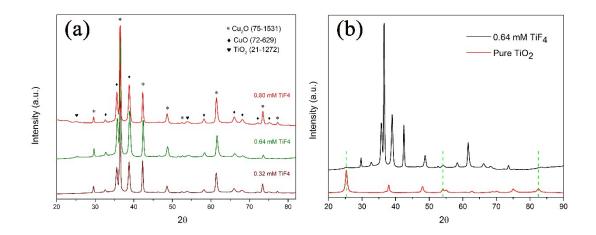





Fig. S6 FESEM images of Cu<sub>2</sub>O-CuO-TiO<sub>2</sub> synthesized at (a) 160  $^{\circ}$ C and (b) 180  $^{\circ}$ C, (c) 190  $^{\circ}$ C, (d) 200  $^{\circ}$ C for 1 h.



**Fig. S7** FESEM images of  $Cu_2O$ -CuO- $TiO_2$  synthesized with different initial concentration of TiF<sub>4</sub> about (a) 0.64 mM, (b) 0.8 mM and (c) high magnification of 0.8 mM.



**Fig. S8** XRD images of (a)  $Cu_2O$ -CuO- $TiO_2$  synthesized with different initial concentration of TiF<sub>4</sub>, (b) contrast of  $Cu_2O$ -CuO- $TiO_2$  (initial concentration of TiF<sub>4</sub> is 0.64 mM) and pure TiO<sub>2</sub>.

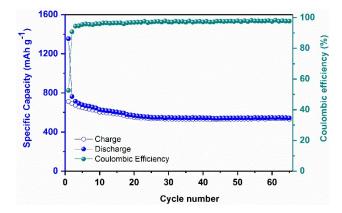



Fig. S9 The electrochemical test of  $Cu_2O$ -CuO-TiO<sub>2</sub> at a current density of 100 mA g<sup>-1</sup>

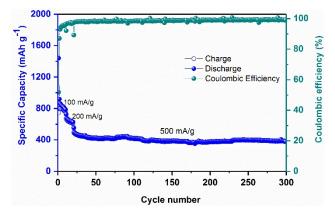



Fig. S10 Long cycling performance of Cu<sub>2</sub>O-CuO-TiO<sub>2</sub> at 500 mA g<sup>-1</sup>.

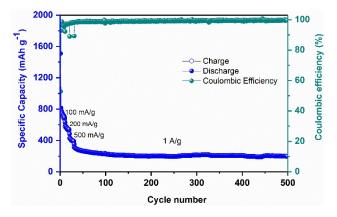



Fig. S11 Long cycling performance of Cu<sub>2</sub>O-CuO-TiO<sub>2</sub> at 1 A g<sup>-1</sup>.

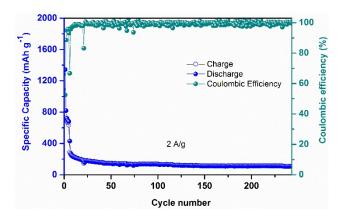
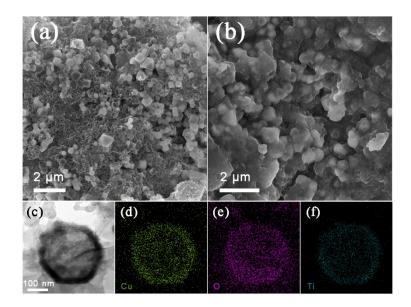




Fig. S12 Cycling performance of  $Cu_2O$ -CuO-TiO<sub>2</sub> at 2 A g<sup>-1</sup> after activation for 5 cycles at 100 mA/g.



**Fig. S13** FESEM images of the electrode (a) before and (b) after 100 cycles. (c-f) STEM-element mapping results of Cu, O, Ti from a single hybrid nanocage after 100 cycles.

**Table S2.** Electrochemical properties of hollow nanocage structured  $Cu_2O-CuO-TiO_2$  in this work, previous reports of different structures or composite materials with  $Cu_2O$ , hollow CuO octahedra and hollow  $TiO_2$  nanocages.

| Morphology                                                       | Electrochemical properties( discharge capacity)                                                                                                                                                        | Current<br>density or<br>rate                   | Preparation method                                        | Refere<br>nce |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|---------------|
| Cu <sub>2</sub> O-CuO-TiO <sub>2</sub><br>hollow nanocages       | 700 mAh∙g <sup>-1</sup> /85 <sup>th</sup> cycle<br>546 mAh∙g <sup>-1</sup> /65 <sup>th</sup> cycle                                                                                                     | 50 mA g <sup>-1</sup><br>100 mA g <sup>-1</sup> | hydrothermal method                                       | This<br>work  |
| 26-faceted Cu <sub>2</sub> O                                     | 145 mAh g <sup>-1</sup> /50 <sup>th</sup> cycle                                                                                                                                                        | 80 mA g <sup>-1</sup>                           | solution-phase route                                      | 4             |
| Cu <sub>2</sub> O with different crystal planes                  | 397 mAh g <sup>-1</sup> /50 <sup>th</sup> cycle (cubes)<br>245.8 mAh g <sup>-1</sup> /50 <sup>th</sup> cycle (octahedra)<br>201.5 mAh g <sup>-1</sup> /50 <sup>th</sup> cycle (truncated<br>octahedra) | 100 mA g <sup>-1</sup>                          | solution-phase route                                      | 5             |
| Cu <sub>2</sub> O nanocube                                       | 420 mAh∙g <sup>−1</sup> /50 <sup>th</sup> cycle<br>236 mAh∙g <sup>−1</sup> /50 <sup>th</sup> cycle                                                                                                     | 0.2 C<br>1 C                                    | solution-phase route                                      | 6             |
| Cu <sub>2</sub> O hollow<br>structure                            | 43 mAh·g <sup>-1</sup> /50 <sup>th</sup> cycle (hollow octahedra)<br>75.3 mAh·g <sup>-1</sup> /50 <sup>th</sup> cycle (core@shell)                                                                     | 100 mA g <sup>-1</sup>                          | solution-phase route                                      | 7             |
| Porous Cu <sub>2</sub> O film                                    | 336 mAh g <sup>-1</sup> /50 <sup>th</sup> cycle<br>213 mAh g <sup>-1</sup> /50 <sup>th</sup> cycle                                                                                                     | 0.1 C<br>5 C                                    | electrodeposition                                         | 8             |
| Cu <sub>2</sub> O over hydrogen exfoliated graphene              | 430 mAh g <sup>-1</sup> /25 <sup>th</sup> cycle                                                                                                                                                        | 0.1 C                                           | deposition & heating in Ar+H <sub>2</sub> gas             | 9             |
| Cu <sub>2</sub> O/Ti <sub>2</sub> CT <sub>x</sub> (T = O,<br>OH) | 145 mAh g <sup>-1</sup> /200 <sup>th</sup> cycle                                                                                                                                                       | 1000 mA g <sup>-1</sup>                         | solvothermal method & ultrasonic treatment                | 10            |
| Cu/Cu <sub>2</sub> O/CuO<br>heterostructures                     | 345 mAh·g⁻¹/50 <sup>th</sup> cycle                                                                                                                                                                     | 100 mA⋅g <sup>-1</sup>                          | hydrothermal method<br>& oxidation process.               | 11            |
| CuO/Cu <sub>2</sub> O hollow<br>sphere                           | 520 mAh∙g <sup>-1</sup> /20 <sup>th</sup> cycle                                                                                                                                                        | 67 mA g <sup>-1</sup>                           | Hydrothermal method                                       | 12            |
| CuO/Cu/TiO₂NT/Ti                                                 | 226 mAh·g <sup>-1</sup> /50 <sup>th</sup> cycle<br>365 mAh·g <sup>-1</sup> /50 <sup>th</sup> cycle<br>(different electrodeposition time)                                                               | _                                               | Anodization &<br>electrodeposition &<br>thermal oxidation | 13            |
| CuO                                                              | 429 mAh g <sup>-1</sup> /50 <sup>th</sup> cycle (microsphere)<br>392.4 mAh g <sup>-1</sup> /50 <sup>th</sup> cycle (flower-like)<br>193.0 mAh g <sup>-1</sup> /50 <sup>th</sup> cycle (thorn-like)     | 0.1 C                                           | solution-phase route<br>hydrothermal method               | 14            |
| CuO nanofibers                                                   | 426 mAh·g <sup>-1</sup> /100 <sup>th</sup> cycle                                                                                                                                                       | 100 mA g <sup>-1</sup>                          | electrospun                                               | 15            |

| Porous CuO              | 320 mAh g <sup>-1</sup> /50 <sup>th</sup> cycle  | 0.1 C                  | hydrothermal & thermal decomposition                        | 16 |
|-------------------------|--------------------------------------------------|------------------------|-------------------------------------------------------------|----|
| CuO hollow<br>octahedra | 470 mAh g <sup>-1</sup> /100 <sup>th</sup> cycle | 100 mA g <sup>-1</sup> | metal<br>organic frameworks                                 | 17 |
| CuO/C<br>microspheres   | 470 mAh g <sup>-1</sup> /50 <sup>th</sup> cycle  | 100 mA g <sup>-1</sup> | calcining<br>in Ar gas followed by a<br>oxidation treatment | 18 |
| TiO₂ nanocage           | 140 mAh·g <sup>-1</sup> /200 <sup>th</sup> cycle | 0.5 C                  | hydrothermal method                                         | 2  |

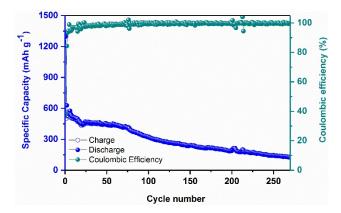



Fig. S14 Cycling performance of pure solid  $Cu_2O$  at a current density of 100 mA g<sup>-1</sup>.

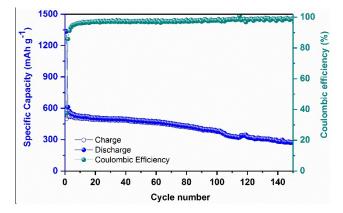



Fig. S15 Cycling performance of the nanocaged CuO at a current density of 100 mA g<sup>-1</sup>.

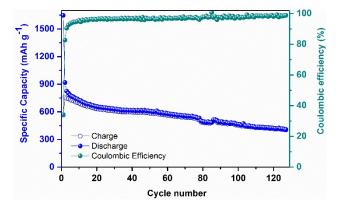



Fig. S16 Cycling performance of the rod-like solid CuO-TiO<sub>2</sub> at a current density of 100 mA  $g^{-1}$ .

- 1. C. Lu, Adv. Mater., 2005, **17**(21), 2562.
- 2. Z. Wang and X. W. Lou, *Adv. Mater.*, 2012, **24**(30), 4124.
- 3. L. Liu, W. Yang, W. Sun, Q. Li and J. K. Shang, ACS Appl. Mater. Interfaces, 2015, 7(3), 1465.
- 4. W. Kang, F. Liu, Y. Su, D. Wang and Q. Shen, *CrystEngComm*, 2011, **13**(12), 4174.
- 5. K. Chen, S. Song and D. Xue, *CrystEngComm*, 2015, **17**(10), 2110.
- I. C. Chang, P.-C. Chen, M.-C. Tsai, T.-T. Chen, M.-H. Yang, H.-T. Chiu and C.-Y. Lee, *CrystEngComm*, 2013, **15**(13), 2363.
- 7. K. Chen, S. Song and D. Xue, *CrystEngComm*, 2013, **15**(46), 10028.
- 8. J. Y. Xiang, X. L. Wang, X. H. Xia, L. Zhang, Y. Zhou, S. J. Shi and J. P. Tu, *Electrochim. Acta*, 2010, **55**(17), 4921.
- 9. G. Ananya, N. Pranati and S. Ramaprabhu, Int. J. Hydrogen Energy, 2016, 41(6), 3974.
- 10. H. Zhang, H. Dong, X. Zhang, Y. Xu and J. Fransaer, *Electrochim. Acta*, 2016, **202**, 24.
- 11. Y. Zhao, Y. Zhang, H. Zhao, X. Li, Y. Li, L. Wen, Z. Yan and Z. Huo, *Nano Res.*, 2015, 8(8), 2763.
- 12. X. Guan, L. Li, G. Li, Z. Fu, J. Zheng and T. Yan, J. Alloys Compd., 2011, 509(7), 3367.
- 13. R. Meng, H. Hou, X. Liu, C. Yan, J. Duan and S. Liu, *Ceram. Int.*, 2016, **42**(5), 6039.
- 14. C. Wang, D. Higgins, F. Wang, D. Li, R. Liu, G. Xia, N. Li, Q. Li, H. Xu and G. Wu, *Nano energy*, 2014, **9**, 334.
- 15. R. Sahay, P. Suresh Kumar, V. Aravindan, J. Sundaramurthy, W. Chui Ling, S. G. Mhaisalkar, S. Ramakrishna and S. Madhavi, *J. Phys. Chem. C*, 2012, **116**(34), 18087.
- 16. M. Wan, D. Jin, R. Feng, L. Si, M. Gao and L. Yue, *Inorg. Chem. Commun.*, 2011, **14**(1), 38.
- 17. R. Wu, X. Qian, F. Yu, H. Liu, K. Zhou, J. Wei and Y. Huang, J. Mater. Chem. A, 2013, 1(37), 11126.
- 18. X. H. Huang, C. B. Wang, S. Y. Zhang and F. Zhou, *Electrochim. Acta*, 2011, **56**(19), 6752.