Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

MCM-41 support to ultrasmall γ -Fe₂O₃ nanoparticles for H₂S removal

C. Cara,^{abc} E. Rombi,^a A. Musinu,^{ac} V. Mameli,^{ac} A. Ardu,^{abc} M. Sanna Angotzi,^{ac} L. Atzori^a, D.

Niznansky,^{d,e} H. L. Xin^f and C. Cannas^{*abc}

^aDepartment of Chemical and Geological Sciences, Università di Cagliari, S.S. 554 bivio per Sestu, 09042, Monserrato (CA), Italy

^bConsorzio AUSI, Palazzo Bellavista Monteponi, 09016 Iglesias, CI, Italy

^cINSTM, Cagliari Unit

^dDepartment of Inorganic Chemistry, Charles University of Prague, Prague 116 36, Czech Republic

^eAS CR, Inst. Inorgan. Chem., vvi, Husinec Rez 25068, Czech Republic

^fCenter for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, United States

*Address correspondence to Carla Cannas: ccannas@unica.it

Figure 1S: FTIR spectra of samples before (No calc_MCM41_M and No calc_MCM41_N) and after calcination (MCM41_M and MCM41_N).

Figure 1S reports FTIR spectra of the supports before and after calcination. Both samples before calcination exhibit different vibrational modes attributable to the presence of CTAB: asymmetric and symmetric C-H stretching (2918 cm⁻¹ and 2845 cm⁻¹), bending (1450 cm⁻¹), and rocking (1400-720 cm⁻¹) modes of CH₂ group. Two additional peaks at 1585 cm⁻¹ and 1383 cm⁻¹ are present in MCM41_N sample synthesized using ethyl acetate as a growth inhibitor agent of the particles. These peaks should be attributed to asymmetric and symmetric COO⁻ stretching modes due to the formation of acetate formed by the hydrolysis of ethyl acetate.

Sample	Pore volume	Amount of	Concentration of	Real Amount
	(cm ³ g ⁻¹)	aqueous	Fe(NO ₃) ₃ · 9H ₂ O	of Fe_2O_3
		solution	solution	(% w/w)
		(μL)		
MCM41_M	0.76	83	1.5	9.6
MCM41_N	0.80	98	1.3	9.6
SBA15	1.10	125	1.1	10.0

 Table 1S: Two-Solvents impregnation conditions and %w/w of iron oxide in each sorbent.

Figure 2S: N_2 adsorption- desorption isotherm (a), pore size distribution (b) and Low angle (c) of Fe_MCM41_N and Fe_MCM41_N_aged.

(a)

Figure 3S: TPD profile and SO₂ and O₂ Quadrupole Mass Spectrometer (QMS) signals of Fe_MCM41_N (a), Fe_SBA15 (b) and Katalco_{JM} 32-5 (c).

Figure 4S: Wide angle XRD patterns of fresh (Fe_MCM41_M), sulphidated (Fe_MCM41_M_S3) and regenerated (FeMCM41_M_R3) Fe_MCM41_M.

Figure 5S: H₂S breakthrough curves of the first sulphidation for the samples Fe_MCM41_M_1S, Fe_MCM41_N_1S and 10Fe_SBA15_1S.

Figure 6S: H₂S breakthrough curves upon three sulphidation–regeneration cycles for the sample Fe_MCM41_M (a), Fe_MCM41_N (b) and Fe_SBA15 (c).