## **Supporting Information**

Electrocatalytic water oxidation at low energy cost by a highly active and robust calcium-manganese oxide thin film sintered on FTO electrode with ethylmethyl immidazolium triflate ionic liquid.

Zaki N. Zahran,<sup>a,b\*</sup> Eman A. Mohamed,<sup>a</sup> and Yoshinori Naruta<sup>a,c</sup>

**Materials.** The FTO conducting glass sheet (fluorine doped SnO<sub>2</sub>, sheet resistance: 7  $\Omega$ /sq., transmission, 90% in the visible region) was obtained from SPD Laboratory, Inc. MnCl<sub>2</sub>·4H<sub>2</sub>O (99.0 %) was purchased from Chameleon Co. CaCl<sub>2</sub> was purchased from Nacalai Tesque, Inc. 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI triflate), KH<sub>2</sub>PO<sub>4</sub> ( $\geq$  99%), K<sub>2</sub>HPO<sub>4</sub> ( $\geq$  99%), KOH, NaOH ( $\geq$  86%), HClO<sub>4</sub>, and NaClO<sub>4</sub> ( 99.99%,) were purchased from Sigma-Aldrich Co. All reagents were used as received without further purification. Mill-Q water (18 M  $\Omega$ .cm) was used for buffer solutions preparation.

**Instruments and characterization.** The electrochemical measurements were carried out on an Autolab Potentiostat/Galvanostat model PGSTAT128N. Particle morphologies and sizes were observed by scanning electron microscopy, Field Emission Hitachi Model S-4300 scanning electron microscope operated at 15 KV accelerating voltage and 15 mm working distance. The X-ray diffraction patterns (XRD) were collected by Rigaku Co. XRD patterns were recorded from 15° to 90° in 20 at a step size of 0.05° and a scan rate of 0.25°/min. Gas chromatographic analyses were done with a Shimadzu GC-8A equipped with a capillary column (0.53 mm ID x 15 m) with a Molecular Sieve 5A layer at 40 °C using Ar as a carrier gas. XP spectra were obtained using a Ulvac Phi 5000 VersaProbe CU X-ray Photoelectron Spectrometer with a Multipak data treatment system. The photoelectrons emitted by a monochromated Al K $\square$  (1486.6 eV; 350 W) radiation were collected with path energy of 23.5 eV through a hemispherical analyzer. The pressure in the analyzing chamber was below 1 x 10<sup>-9</sup> Torr during the measurements. All spectra in XPS were calibrated to C 1s = 284.6 eV.

Preparation of  $\alpha$ -Mn<sub>2</sub>O<sub>3</sub> and CaMn-Oxide EMI triflate-containing precursor solutions. The EMI triflate containing precursor solution of  $\alpha$ -Mn<sub>2</sub>O<sub>3</sub> was prepared by dissolving MnCl<sub>2</sub>•4H<sub>2</sub>O (1.0 g, 5.05 mmol) in MeOH (4 mL). The solution was then sonicated for ~ 1 h. EMI triflate solution (1.0 mL) was then added to the

solution and the mixture was further sonicated for ~ 1 h. The EMI triflate-containing precursor solution of CaMn-Oxide was prepared similarly by dissolving a mixture of MnCl<sub>2</sub>•4H<sub>2</sub>O (1.0 g, 5.05 mmol) and CaCl<sub>2</sub> (0.56 g, 5.05 mmol) in MeOH (4 mL) and EMI triflate (1 mL).

## Preparation of FTO/EMI &-Mn<sub>2</sub>O<sub>3</sub> and FTO EMI CaMn-Oxide electrodes. A

FTO sheet was cut down to rectangular plates of 5.0 cm x 3.0 cm, sonicated in deionized water and acetone for 15 min each, and then dried in an oven at 60 °C. An adhesive NITOFLON<sup>®</sup> tape No. 973UL (Nitto Denko Co., Ltd) was attached on the plate (2 layers of tape) in such a way that 1.0 cm x 5.0 cm of the plate remained uncovered. The EMI triflate containing precursor solution of  $\alpha$ -Mn<sub>2</sub>O<sub>3</sub> or CaMn-Oxide (200 µL) was spread over the uncovered 1.0 cm x 5.0 cm of the plate then justified with a glass tube using a doctor Blading technique at 110 °C. The tape was then removed, and the electrodes containing the precursor films were sintered in an oven at 550 °C for 1 h under air. After cooling down, the electrodes was washed strongly with tap water to leave a strongly attached layer of  $\alpha$ -Mn<sub>2</sub>O<sub>3</sub> and CaMn-Oxide on the FTO electrodes called FTO/EMI  $\alpha$ -Mn<sub>2</sub>O<sub>3</sub> and FTO/EMI CaMn-Oxide. The electrodes were then cut into suitable pieces (1.0 cm x 3.0 cm) for the characterization and measurements.

**Electrochemical measurements.** The electrochemical measurements were performed under an argon atmosphere using a conventional three-electrode cell. The working electrode was FTO/EMI  $\alpha$ -Mn<sub>2</sub>O<sub>3</sub> or FTO/EMI CaMn-Oxide. A Pt wire and a Ag/AgCl (3 M NaCl) were the counter and reference electrodes, respectively. While all measurements were carried out using a Ag/AgCl (3 M KCl) reference electrode, the results in this study are presented against the normal hydrogen electrode (NHE) by addition of 0.198 V to the potential measured with respect to Ag/AgCl (3 M NaCl) reference electrode. All measurements were made in a 0.1 M potassium phosphate buffer (pH 7.0) or 1 M NaOH solutions at 25°C.

**Bulk electrolysis and oxygen measurements.** Bulk electrolysis was performed in a two compartment gas-tight electrochemical cell with a glass frit junction of fine porosity: The cell was filled with 0.1 M KPi (pH 7.0) or 1 M NaOH solutions. The solution was degased by Ar for 20 min. The FTO/EMI  $\alpha$ -Mn<sub>2</sub>O<sub>3</sub> or FTO/EMI CaMn-Oxide and Ag/AgCl (3 M NaCl) working and reference electrodes were inserted close to each other and a Pt foil (20 cm<sup>2</sup>) was used as a counter electrode. The evolved O<sub>2</sub>

in the working electrode compartment was measured as previously reported using gas chromatography.<sup>1</sup>

**Table S1.** Atomic composition ratio of the FTO/EMI  $\alpha$ -Mn<sub>2</sub>O<sub>3</sub> and FTO/EMI CaMn-Oxide electro-catalysts measured by XPS.

| Electro-                                     | С    | Ν    | 0    | F    | S     | Ca    | Mn    | Formula                                             |
|----------------------------------------------|------|------|------|------|-------|-------|-------|-----------------------------------------------------|
| catalyst                                     |      |      |      |      |       |       |       |                                                     |
| FTO/EMI α-<br>Mn <sub>2</sub> O <sub>3</sub> | 0.30 | 0.03 | 0.48 | 0    | 0.004 | 0     | 0.19  | α-Mn <sub>2</sub> O <sub>3</sub> .2H <sub>2</sub> O |
| FTO/EMI<br>CaMn-Oxide                        | 0.38 | 0.06 | 0.33 | 0.05 | 0.021 | 0.073 | 0.082 | Ca <sub>0.89</sub> Mn-Oxide                         |

| <b>t</b>             | FTO/EMI <i>a</i> -Mn <sub>2</sub> O <sub>3</sub> | FTO/EMI CaMn-Oxide |
|----------------------|--------------------------------------------------|--------------------|
| C 1s                 | 283.4                                            | 282.73             |
|                      | 284.8                                            | 284.86             |
|                      | 285.58                                           | 285.27             |
|                      | 286.44                                           | 286.82             |
|                      | 288.02                                           | 288.26             |
|                      |                                                  |                    |
| N 1s                 | 400.18                                           | 400.41             |
|                      |                                                  |                    |
| O 1s                 | 529.57                                           | 529.4              |
|                      | 530.97                                           | 529.52             |
|                      | 532.83                                           | 531.59             |
|                      |                                                  | 532.83             |
|                      |                                                  | 533.71             |
|                      |                                                  |                    |
| F 1s                 |                                                  | 685.85             |
|                      |                                                  | 686.69             |
|                      |                                                  |                    |
| S 2p                 |                                                  | 170.08             |
|                      |                                                  |                    |
| Ca 2p                |                                                  | 345.75             |
|                      |                                                  | 349.31             |
|                      |                                                  | 352.07             |
|                      |                                                  | 353.19             |
|                      |                                                  |                    |
| Mn 2p <sub>3/2</sub> | 640.98                                           | 640.56             |
|                      | 642.64                                           | 641.83             |
|                      |                                                  | 643.73             |
|                      |                                                  |                    |
| Mn 2p <sub>1/2</sub> | 652.61                                           | 651.52             |
|                      | 653.49                                           | 652.94             |
|                      |                                                  | 654.29             |
|                      |                                                  |                    |
| Mn 3s                | 83.18                                            | 83.15              |
|                      | 88.83                                            | 88.63              |
|                      |                                                  |                    |
| $\Delta E Mn 3s$     | 5.65                                             | 5.48               |
|                      |                                                  |                    |
| Mn Valencies         | II, III                                          | II, III, IV        |

**Table S2.** XPS deconvoluted values of C 1s, N 1s, O 1s, F 1s, S 2p, Ca 2p, Mn  $2p_{3/2}$ , Mn  $2p_{1/2}$ , and Mn 3s for FTO/EMI  $\alpha$ -Mn<sub>2</sub>O<sub>3</sub> and FTO/EMI CaMn-Oxide electro-catalysts.

| $E_{\rm app}(V)$ | FTO/I           | EMI CaMı        | n-Oxide                | FTO/EMI α-Mn <sub>2</sub> O <sub>3</sub> |                 |                        |  |
|------------------|-----------------|-----------------|------------------------|------------------------------------------|-----------------|------------------------|--|
|                  | R <sub>s</sub>  | R <sub>ct</sub> | CPE                    | R <sub>s</sub>                           | R <sub>ct</sub> | CPE                    |  |
|                  | $(\Omega/cm^2)$ | $(\Omega/cm^2)$ |                        | $(\Omega/cm^2)$                          | $(\Omega/cm^2)$ |                        |  |
| 0.198            | 95.6            | 4,773.4         | 1.7 x 10 <sup>-4</sup> | 276.7                                    | 21, 147         | 5.9 x 10 <sup>-5</sup> |  |
| 0.998            | 41.6            | 24,544          | 6.5 x 10 <sup>-5</sup> | 2,154.4                                  | 21, 725         | 7.3 x 10 <sup>-5</sup> |  |
|                  |                 |                 |                        | 1,008.6                                  | 1,531.8         | 1.4 x 10 <sup>-6</sup> |  |
| 1.098            | 46.4            | 14, 587         | 1.1 x 10 <sup>-4</sup> | 2182.5                                   | 15,959          | 9.9 x 10 <sup>-5</sup> |  |
| 1.198            | 69.7            | 1,747           | 1.7 x 10 <sup>-4</sup> | 2,069.1                                  | 7,915.7         | 2.0 x 10 <sup>-4</sup> |  |
| 1.298            | 94.5            | 212.3           | 1.2 x 10 <sup>-4</sup> | 907.1                                    | 1,455.8         | 9.8 x 10 <sup>-7</sup> |  |
| 1.389            | 62.3            | 71.4            | 9.3 x 10 <sup>-5</sup> | 49.2                                     | 368.3           | 9.6 x 10 <sup>-7</sup> |  |

**Table S3.** Simulated  $R_s$ ,  $R_{ct}$ , and CPE of FTO/EMI CaMn-Oxide and FTO/EMI  $\alpha$ -Mn<sub>2</sub>O<sub>3</sub> electro-catalysts obtained from the Electrochemical impedance spectroscopy (EIS) measurements performed at different applied potentials.



**Figure S1**. XPS deconvolution of C 1s, N 1s, O 1s, Mn  $2p_{3/2}$ , Mn  $2p_{1/2}$ , and Mn 3s of the FTO/EMI  $\alpha$ -Mn<sub>2</sub>O<sub>3</sub> electro-catalyst.



**Figure S2.** XPS deconvolution of C 1s, N 1s, O 1s, F 1s, S 2p, Ca 2p, Mn  $2p_{3/2}$ , Mn  $2p_{1/2}$ , and Mn 3s of the FTO/EMI CaMn-Oxide electro-catalyst.



**Figure S3.** Current-time profile of a bulk electrolysis conducted at 1.38 V applied potential of FTO/EMI CaMn-Oxide electro-catalyst in a 0.1 M KPi buffer solution (pH 7.0).



**Figure S4. (a)** XP spectra of C 1s, N 1s, O 1s, F 1s, Ca 2p, and Mn  $2p_{3/2}$  of FTO/EMI CaMn-Oxide electro-catalyst before (black lines) and after (red lines) electrolysis at 1.39 V for 40 h. (b) XRD patterns before and after electrolysis of FTO/EMI CaMn-Oxide. (c) XRD patterns before and after electrolysis of FTO/EMI  $\alpha$ -Mn<sub>2</sub>O<sub>3</sub>.



**Figure S5.** LSV at 5 mV/s scan rate of FTO/EMI CaMn-Oxide in 1 M NaOH. Inset: controlled potential electrolysis at 0.9 and 1.0 V in 1M NaOH.



**Figure S6.** (a) CVs at 50 mV/s scan rate of FTO/EMI  $\alpha$ -Mn<sub>2</sub>O<sub>3</sub> (black line) and FTO/EMI CaMn-Oxide (red line) in a 0.1 M KPi buffer solution (pH 7.0). (b) CVs at different scan rates of FTO/EMI CaMn-Oxide. (c) Current density-scan rates relationship derived from (b).



**Figure S7.** Tafel plots and Tafel slope values of FTO/EMI CaMn-Oxide (red lines) and FTO/ $\alpha$ -Mn<sub>2</sub>O<sub>3</sub> (blue lines) measured in a 0.1 M KPi buffer solution (pH 7.0) without iR correction. Values are Tafel slopes in mV/decade.



**Figure S8.** (a) LSVs at 5 mV/s scan rate of FTO/EMI CaMn-Oxide (red line) in a 0.1 M KPi buffer solutions of different pHs (b) Onset potential of the water oxidation peak ( $E_{onset}$ ) and pHs relationship.

1 Z. N. Zahran, E. A. Mohamed, T. Ohta and Y. Naruta, *ChemCatChem*, 2016, **8**, 532–535.