Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Structural and electrochemical studies of novel Na₇V₃Al(P₂O₇)₄(PO₄) and Na₇V₂Al₂(P₂O₇)₄(PO₄) high-voltage cathode materials for Na-ion batteries

Vadim M. Kovrugin,^{ab} Jean-Noël Chotard,^{ab} François Fauth,^c Arash Jamali,^d Rénald David,^{ab} and Christian Masquelier*^{ab}

^a Laboratoire de Réactivité et de Chimie des Solides, CNRS UMR 7314, Université de Picardie Jules Verne, 80039, Amiens Cedex, France

^b RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, 80039 Amiens Cedex, France

^c CELLS – ALBA Synchrotron, 08290 Cerdanyola del Valles, Barcelona, Spain

^d Plateforme de Microscopie Electronique, Université de Picardie Jules Verne, 80039 Amiens Cedex, France

* corresponding author: christian.masquelier@u-picardie.fr

Table of contents

S1. Powder X-ray diffraction patterns of the obtained solid productsS4
Figure S1 Results of the Rietveld refinements of the crystal structures of new $Na_7V_3Al(P_2O_7)_4(PO_4)$ (a) and $Na_7V_2Al_2(P_2O_7)_4(PO_4)$ (b) based on laboratory powder XRD data.S4
S2. Rietveld refinement of the powder X-ray diffraction dataS5
Figure S2 Results of the Rietveld refinement of the structures of new Na ₇ V ₃ Al(P ₂ O ₇) ₄ (PO ₄) (a) and Na ₇ V ₂ Al ₂ (P ₂ O ₇) ₄ (PO ₄) from the laboratory powder XRD data.
Figure S3 Results of the Rietveld refinement of the crystal structure of $Na_7Al_4(P_2O_7)_4(PO_4)$ from the synchrotron (a) and laboratory (b) powder XRD dataS6
S3. Single crystal X-ray diffraction dataS7
Table S1 Fractional atomic coordinates and equivalent displacement parameters ($Å^2$) forNa7V4(P2O7)4(PO4).S7
TableS2 Fractionalatomiccoordinatesandisotropicorequivalentdisplacementparameters ($Å^2$) for Na ₇ V ₃ Al(P_2O_7) ₄ (PO ₄)S7
Table S3 Fractional atomic coordinates and equivalent displacement parameters (Ų) forNa7V2AI2(P2O7)4(PO4).S8
Table S4 Atomic displacement parameters (Ų) for Na ₇ V ₄ (P ₂ O ₇) ₄ (PO ₄)S8
Table S5 Atomic displacement parameters (Å ²) for Na ₇ V ₃ Al(P ₂ O ₇) ₄ (PO ₄)S9
Table S6 Atomic displacement parameters (Å ²) for Na ₇ V ₂ Al ₂ (P ₂ O ₇) ₄ (PO ₄)S9
Table S7 Selected interatomic distances in the crystal structures of $Na_7V_{4-x}Al_x(P_2O_7)_4(PO_4)$,x = 0, 1, and 2
S4. Energy-dispersive X-ray spectroscopy (EDX) spectraS11
Figure S4 EDX elemental analysis and SEM image of the powder samples of Na ₇ V ₄₋ $_xAl_x(P_2O_7)_4(PO_4)$, x = 1 (a), 2 (b), and 4 (c)S11
S5. Electrochemical behavior of new materialsS12
Figure 55 First charge-discharge curves at various C rates for new $Na_7V_3AI(P_2O_7)_4(PO_4)$ (a) and $Na_7V_2AI_2(P_2O_7)_4(PO_4)$ (b) compositions cycled between 2.9 and 4.2 V vs. Na^+/Na
Figure S6 GITT curves for new Na ₇ V ₃ Al(P ₂ O ₇) ₄ (PO ₄) (a) and Na ₇ V ₂ Al ₂ (P ₂ O ₇) ₄ (PO ₄) (b) compositions cycled between 2.9 and 5.0 V vs. Na ⁺ /Na at C/20. GITT curves were acquired for 30 min and 1 h relaxing interval
Figure S7 Cycling performance of the $Na_7V_3Al(P_2O_7)_4(PO_4)$ (a, c) and $Na_7V_2Al_2(P_2O_7)_4(PO_4)$ (b, d) phases cycled between 2.6 and 5.0 V (a, b) and 2.6 and 4.2 V (c, d) vs. Na^+/Na at different current densities

S8. In-situ XRD patternsS15

Figure S10 | In-situ XRD patterns of selected phases obtained upon cycling in the voltage range of 2.7–4.2 V (left) and 2.6–5.0 V (right) vs. Na⁺/Na......S17

Figure S1 | Results of the Rietveld refinements of the crystal structures of new $Na_7V_3AI(P_2O_7)_4(PO_4)$ (a) and $Na_7V_2AI_2(P_2O_7)_4(PO_4)$ (b) based on laboratory powder XRD data.

Figure S2 | Results of the Rietveld refinement of the structures of new Na₇V₃Al(P₂O₇)₄(PO₄) (a) and Na₇V₂Al₂(P₂O₇)₄(PO₄) from the laboratory powder XRD data.

Figure S3 | Results of the Rietveld refinement of the crystal structure of $Na_7Al_4(P_2O_7)_4(PO_4)$ from the synchrotron (a) and laboratory (b) powder XRD data.

S3. Single crystal X-ray diffraction data

	Wyck.	X	У	Z	U _{eq}
V1	8e	0.81624(4)	0.12034(4)	0.12976(11)	0.00596(14)
P1	2a	0	0	0	0.0057(4)
P2	8e	0.61985(7)	0.25690(7)	0.14137(15)	0.00642(19)
Р3	8e	0.95619(7)	0.30282(7)	0.11002(17)	0.00721(19)
NA1	2b	0	0	1/2	0.0619(16)
NA2	4d	0	1/2	0.8278(4)	0.0287(7)
NA3	8e	0.91816(13)	0.25935(13)	0.6041(3)	0.0200(4)
01	8e	0.13703(19)	0.17101(19)	0.1884(4)	0.0104(6)
02	8e	0.6995(2)	0.1912(2)	0.1025(5)	0.0177(6)
03	8e	0.93538(18)	0.05554(19)	0.1477(4)	0.0104(6)
04	8e	0.5359(2)	0.1880(2)	0.2107(5)	0.0151(6)
05	8e	0.5864(2)	0.3048(2)	0.9432(4)	0.0149(7)
06	8e	0.0020(2)	0.2570(2)	0.9201(4)	0.0115(6)
07	8e	0.9269(2)	0.40252(19)	0.0722(5)	0.0138(6)
08	8e	0.8796(2)	0.2434(2)	0.2074(5)	0.0173(7)

Table S1 | Fractional atomic coordinates and equivalent displacement parameters ($Å^2$) for Na₇V₄(P₂O₇)₄(PO₄).

Table S2 | Fractional atomic coordinates and isotropic or equivalent displacement parameters ($Å^2$) for Na₇V₃Al(P₂O₇)₄(PO₄).

	Wyck.	x	У	Z	U _{eq} /U _{iso} *
M1 (V _{0.75} Al _{0.25})	8e	0.81757(12)	0.12096(12)	0.1317(3)	0.0090(4)
P1	2a	0	0	0	0.0068(10)
P2	8e	0.62231(17)	0.25698(16)	0.1444(4)	0.0062(5)
P3	8e	0.95720(17)	0.30166(16)	0.1063(4)	0.0068(5)
Na1	2b	0	0	1/2	0.050(3)
Na2	4d	0	1/2	0.8235(9)	0.0277(15)
Na3	8e	0.9187(3)	0.2590(3)	0.6009(7)	0.0195(10)
01	8e	0.1378(4)	0.1713(4)	0.1843(9)	0.0101(15)*
02	8e	0.7019(4)	0.1906(5)	0.1096(12)	0.0192(16)
03	8e	0.9347(4)	0.0542(4)	0.1483(10)	0.0087(13)
04	8e	0.5355(4)	0.1898(5)	0.2112(11)	0.0188(17)
05	8e	0.5903(5)	0.3056(5)	0.9447(10)	0.0171(17)
06	8e	0.0034(5)	0.2561(4)	0.9175(10)	0.0107(14)
07	8e	0.9269(4)	0.4017(4)	0.0690(10)	0.0105(16)
08	8e	0.8802(5)	0.2421(5)	0.2030(10)	0.0179(16)

	Wyck.	X	У	Z	U _{eq}
M1 (V _{0.5} Al _{0.5})	8e	0.81818(16)	0.12135(17)	0.1333(2)	0.0095(5)
P1	2a	0	0	0	0.0068(12)
P2	8e	0.6239(2)	0.2570(2)	0.1458(3)	0.0078(6)
Р3	8e	0.95804(19)	0.30135(19)	0.1052(3)	0.0090(6)
Na1	2b	0	0	1/2	0.055(4)
Na2	4d	0	1/2	0.8213(6)	0.0310(19)
Na3	8e	0.9197(3)	0.2585(3)	0.5988(5)	0.0240(12)
01	8e	0.1371(5)	0.1706(6)	0.1807(7)	0.016(2)
02	8e	0.7032(5)	0.1914(5)	0.1133(8)	0.0194(19)
03	8e	0.9326(5)	0.0533(5)	0.1488(8)	0.0131(17)
04	8e	0.5373(5)	0.1890(6)	0.2104(8)	0.0174(19)
05	8e	0.5913(6)	0.3071(5)	0.9431(7)	0.018(2)
06	8e	0.0067(5)	0.2558(5)	0.9148(7)	0.0130(17)
07	8e	0.9278(5)	0.4004(5)	0.0669(7)	0.0117(18)
08	8e	0.8813(7)	0.2410(6)	0.2020(8)	0.022(2)

Table S3 | Fractional atomic coordinates and equivalent displacement parameters ($Å^2$) for Na₇V₂Al₂(P₂O₇)₄(PO₄).

Table S4 | Atomic displacement parameters ($Å^2$) for Na₇V₄(P₂O₇)₄(PO₄).

	U ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₂	U ₁₃	U ₂₃
V1	0.0058(3)	0.0062(3)	0.0059(3)	0.0006(2)	0.0004(3)	-0.0005(3)
P1	0.0056(5)	0.0056(5)	0.0061(9)	0.000	0.000	0.000
P2	0.0065(4)	0.0076(4)	0.0052(4)	0.0003(4)	0.0003(4)	0.0003(4)
Р3	0.0071(4)	0.0070(4)	0.0075(5)	0.0008(3)	-0.0007(4)	-0.0004(4)
NA1	0.085(3)	0.085(3)	0.016(2)	0.000	0.000	0.000
NA2	0.0300(15)	0.0440(17)	0.0121(13)	-0.0242(12)	0.000	0.000
NA3	0.0212(9)	0.0224(9)	0.0163(9)	-0.0044(7)	-0.0028(8)	0.0033(8)
01	0.0143(15)	0.0101(14)	0.0067(13)	0.0049(11)	-0.0015(11)	0.0006(11)
02	0.0136(14)	0.0231(16)	0.0164(16)	0.0098(11)	-0.0013(13)	-0.0033(14)
03	0.0085(12)	0.0138(13)	0.0091(13)	0.0052(10)	-0.0017(12)	-0.0026(12)
04	0.0152(15)	0.0185(15)	0.0114(14)	-0.0106(13)	0.0071(12)	-0.0061(13)
05	0.0209(16)	0.0175(15)	0.0064(14)	0.0066(13)	-0.0004(12)	0.0020(12)
06	0.0112(13)	0.0144(14)	0.0089(14)	0.0030(11)	-0.0018(12)	-0.0031(12)
07	0.0186(15)	0.0097(14)	0.0133(15)	0.0031(12)	-0.0021(12)	0.0006(11)
08	0.0172(15)	0.0152(15)	0.0194(15)	-0.0089(13)	0.0076(13)	-0.0074(13)

	<i>U</i> ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
M1 (V _{0.75} Al _{0.25})	0.0109(10)	0.0082(9)	0.0081(9)	-0.0006(8)	0.0005(9)	0.0002(9)
P1	0.0100(17)	0.0100(17)	0.001(2)	0.000	0.000	0.000
P2	0.0071(12)	0.0054(12)	0.0060(11)	0.0004(11)	0.0005(11)	0.0024(11)
Р3	0.0066(12)	0.0056(12)	0.0081(12)	0.0024(10)	-0.0009(10)	0.0006(10)
Na1	0.070(4)	0.070(4)	0.009(4)	0.000	0.000	0.000
Na2	0.028(3)	0.040(4)	0.015(3)	-0.021(3)	0.000	0.000
Na3	0.023(2)	0.021(2)	0.015(2)	-0.0045(19)	-0.0009(19)	0.004(2)
02	0.011(4)	0.026(4)	0.021(4)	0.012(3)	0.000(3)	-0.004(4)
03	0.005(3)	0.015(3)	0.006(3)	0.003(3)	-0.001(3)	-0.004(3)
O4	0.014(4)	0.021(4)	0.022(4)	-0.015(3)	0.010(3)	-0.011(3)
05	0.025(4)	0.018(4)	0.008(4)	0.008(4)	-0.002(3)	0.002(3)
06	0.012(3)	0.012(3)	0.008(3)	0.007(3)	-0.001(3)	-0.003(3)
07	0.015(4)	0.003(3)	0.013(4)	0.003(3)	-0.001(3)	-0.002(3)
08	0.019(4)	0.018(4)	0.017(4)	-0.003(4)	0.006(3)	-0.004(3)

Table S5	Atomic displacement parameters ($Å^2$) for Na ₇ V ₃ Al(P ₂ O ₇) ₄ (PO ₄).
----------	----------------------------------	--

Table S6 | Atomic displacement parameters $(Å^2)$ for Na₇V₂Al₂(P₂O₇)₄(PO₄).

	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
M1 (V _{0.5} Al _{0.5})	0.0112(14)	0.0109(13)	0.0063(9)	0.0019(12)	0.0005(8)	0.0007(9)
P1	0.006(2)	0.006(2)	0.008(2)	0.000	0.000	0.000
P2	0.0057(15)	0.0091(17)	0.0086(10)	-0.0004(13)	0.0008(10)	0.0010(10)
Р3	0.0072(16)	0.0098(16)	0.0099(10)	0.0022(12)	-0.0019(9)	-0.0008(10)
Na1	0.072(6)	0.072(6)	0.020(4)	0.000	0.000	0.000
Na2	0.035(5)	0.047(5)	0.011(3)	-0.031(5)	0.000	0.000
Na3	0.027(3)	0.029(3)	0.0154(15)	-0.010(2)	-0.0051(17)	0.0026(18)
01	0.020(5)	0.020(5)	0.008(3)	0.002(4)	-0.001(3)	0.001(3)
02	0.026(5)	0.022(5)	0.011(3)	0.007(4)	0.008(3)	-0.003(3)
03	0.011(4)	0.021(5)	0.007(3)	0.005(4)	0.001(3)	-0.005(3)
04	0.008(5)	0.024(5)	0.020(3)	-0.005(4)	0.010(3)	-0.013(3)
05	0.029(6)	0.018(5)	0.009(3)	0.001(4)	-0.003(3)	0.003(3)
06	0.014(4)	0.019(5)	0.006(3)	0.002(4)	0.001(3)	-0.001(3)
07	0.022(5)	0.005(5)	0.008(3)	0.001(4)	-0.004(3)	0.003(2)
08	0.027(5)	0.020(5)	0.020(3)	-0.009(5)	0.011(3)	-0.005(3)

Table S7	Selected interatomic distances in the crystal structures of $Na_7V_{4-x}AI_x(P_2O_7)_4(PO_4)$, x = 0,
1, and 2.	

Distance, Å	<i>x</i> = 0	<i>x</i> = 1	<i>x</i> = 2
<i>M</i> 1-03	1.931(3)	1.911(6)	1.881(7)
<i>M</i> 1–O2	1.949(3)	1.916(7)	1.904(7)
<i>M</i> 1–O6	2.003(3)	1.981(7)	1.948(8)
<i>M</i> 1-08	2.027(3)	1.987(7)	1.956(8)
<i>M</i> 1–01	2.039(3)	2.009(6)	1.981(5)
<i>M</i> 1–05	2.051(3)	2.024(6)	1.987(5)
< <i>M</i> 1–0>	2.000	1.971	1.943
Na1-O3	2.540(3) 4×	2.518(6) 4×	2.507(6) 4×
Na1-05	3.055(3) 4×	3.052(7) 4×	3.033(8) 4×
<na1-o></na1-o>	2.798	2.785	2.770
Na2–07	2.323(3) 2×	2.322(7) 2×	2.317(7) 2×
Na2–07	2.371(3) 2×	2.360(7) 2×	2.354(6) 2×
Na2-04	2.731(3) 2×	2.741(6) 2×	2.725(8) 2×
<na2-o></na2-o>	2.475	2.474	2.465
Na3-06	2.330(3)	2.326(7)	2.325(4)
Na3–07	2.400(3)	2.397(7)	2.412(9)
Na3-01	2.521(3)	2.528(7)	2.540(8)
Na3-05	2.577(4)	2.611(7)	2.606(9)
Na3-08	2.583(4)	2.573(8)	2.550(6)
Na3-04	2.709(4)	2.667(8)	2.653(8)
Na3-08	3.086(4)	3.098(8)	3.127(10)
Na3-05	3.111(4)	3.036(8)	3.005(9)
<na3-o></na3-o>	2.664	2.655	2.652
P1-03	1.531(3) 4×	1.521(6) 4×	1.528(6) 4×
<p1-0></p1-0>	1.531	1.521	1.528
P2-02	1.488(3)	1.482(7)	1.466(7)
P2-05	1.505(3)	1.496(6)	1.521(6)
P2-01	1.507(3)	1.503(6)	1.502(7)
P2-04	1.605(3)	1.608(6)	1.605(7)
<p2-o></p2-o>	1.526	1.522	1.524
P3-07	1.496(3)	1.497(6)	1.481(7)
P3-08	1.510(3)	1.506(7)	1.504(8)
P3-06	1.516(3)	1.502(7)	1.516(6)
Р3-04	1.609(3)	1.601(6)	1.612(6)
<p3-0></p3-0>	1.533	1.527	1.528

S4. Energy-dispersive X-ray spectroscopy (EDX) spectra

Figure S4 | EDX elemental analysis and SEM image of the powder samples of Na₇V₄₋ $_x$ Al_x(P₂O₇)₄(PO₄), x = 1 (a), 2 (b), and 4 (c).

S5. Electrochemical behavior of new materials

Figure 55 | First charge-discharge curves at various C rates for new Na₇V₃Al(P₂O₇)₄(PO₄) (a) and Na₇V₂Al₂(P₂O₇)₄(PO₄) (b) compositions cycled between 2.9 and 4.2 V vs. Na⁺/Na.

Figure S6 | GITT curves for new Na₇V₃Al(P₂O₇)₄(PO₄) (a) and Na₇V₂Al₂(P₂O₇)₄(PO₄) (b) compositions cycled between 2.9 and 5.0 V *vs.* Na⁺/Na at C/20. GITT curves were acquired for 30 min and 1 h relaxing interval.

Figure S7 | Cycling performance of the Na₇V₃Al(P₂O₇)₄(PO₄) (a, c) and Na₇V₂Al₂(P₂O₇)₄(PO₄) (b, d) phases cycled between 2.6 and 5.0 V (a, b) and 2.6 and 4.2 V (c, d) *vs.* Na⁺/Na at different current densities.

S8. In-situ XRD patterns

Figure S8 | *In-situ* XRD patterns of selected phases obtained upon cycling in the voltage range of 2.7–4.2 V vs. Na⁺/Na. Reflections not associated with the studied crystal structure are indicated by blue triangles.

Figure S9 | Selected 2theta regions of the XRD patterns recorded *operando* for $Na_7V_3AI(P_2O_7)_4(PO_4)$ at C/20 in the 2.7–4.2 V (a) and 2.6–5.0 V (b) vs Na^+/Na voltage ranges.

Figure S10 | *In-situ* XRD patterns of selected phases obtained upon cycling in the voltage range of 2.7–4.2 V (left) and 2.6–5.0 V (right) *vs.* Na⁺/Na.